No Arabic abstract
Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBSs) among a continuum of conventional Andreev bound states. The distinct feature of these MBSs lies in the $4pi$-periodicity of their energy-phase relation that yields a fractional ac Josephson effect and a suppression of odd Shapiro steps under $r!f$ irradiation. Yet, recent experiments showed that a few, or only the first, odd Shapiro steps are missing, casting doubts on the interpretation. Here, we show that Josephson junctions tailored on the large bandgap 3D TI Bi$_2$Se$_3$ exhibit a fractional ac Josephson effect acting on the first Shapiro step only. With a modified resistively shunted junction model, we demonstrate that the resilience of higher order odd Shapiro steps can be accounted for by thermal poisoning driven by Joule overheating. Furthermore, we uncover a residual supercurrent at the nodes between Shapiro lobes, which provides a direct and novel signature of the current carried by the MBS. Our findings showcase the crucial role of thermal effects in topological Josephson junctions and lend support to the Majorana origin of the partial suppression of odd Shapiro steps.
Topological superconductors supporting Majorana Fermions with non-abelian statistics are presently a subject of intense theoretical and experimental effort. It has been proposed that the observation of a half-frequency or a fractional Josephson effect is a more reliable test for topological superconductivity than the search for end zero modes. Low-energy end modes can occur accidentally due to impurities. In fact, the fractional Josephson effect has been observed for the semiconductor nanowire system. Here we consider the ac Josephson effect in a conventional s-wave superconductor-normal metal-superconductor junction at a finite voltage. Using a Floquet-Keldysh treatment of the finite voltage junction, we show that the power dissipated from the junction, which measures the ac Josephson effect, can show a peak at half (or even incommensurate fractions) of the Josephson frequency. A similar conclusion is shown to hold for the Shapiro step measurement. The ac fractional Josephson peak can also be understood simply in terms of Landau-Zener processes associated with the Andreev bound state spectrum of the junction.
Topological superconductors which support Majorana fermions are thought to be realized in one-dimensional semiconducting wires coupled to a superconductor. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize quantum gates that are topologically protected from local sources of decoherence. Here we report the observation of the fractional a.c. Josephson effect in a hybrid semiconductor/superconductor InSb/Nb nanowire junction, a hallmark of topological matter. When the junction is irradiated with a radio-frequency f in the absence of an external magnetic field, quantized voltage steps (Shapiro steps) with a height hf/2e are observed, as is expected for conventional superconductor junctions, where the supercurrent is carried by charge-2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is doubled to hf/e, suggesting that the supercurrent is carried by charge-e quasiparticles. This is a unique signature of Majorana fermions, elusive particles predicted ca. 80 years ago.
We study the spin transport through a 1D quantum Ising-XY-Ising spin link that emulates a topological superconducting-normal-superconducting structure via Jordan-Wigner (JW) transformation. We calculate, both analytically and numerically, the spectrum of spin Andreev bound states and the resulting $mathbb{Z}_2$ fractional spin Josephson effect (JE) pertaining to the emerging Majorana JW fermions. Deep in the topological regime, we identify an effective time-reversal symmetry that leads to $mathbb{Z}_4$ fractional spin JE in the $textit{presence}$ of interactions within the junction. Moreover, we uncover a hidden inversion time-reversal symmetry that protects the $mathbb{Z}_4$ periodicity in chains with an odd number of spins, even in the $textit{absence}$ of interactions. We also analyze the entanglement between pairs of spins by evaluating the concurrence in the presence of spin current and highlight the effects of the JW Majorana states. We propose to use a microwave cavity setup for detecting the aforementioned JEs by dispersive readout methods and show that, surprisingly, the $mathbb{Z}_2$ periodicity is immune to $textit{any}$ local magnetic perturbations. Our results are relevant for a plethora of spin systems, such as trapped ions, photonic lattices, electron spins in quantum dots, or magnetic impurities on surfaces.
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topological nodal points in the spectrum of Andreev states. When the scattering matrix possesses time-reversal symmetry, the gap closing occurs at special stationary points that are topologically trivial as they carry vanishing Berry fluxes. In contrast, for the time-reversal broken case we find topological monopoles of the Berry curvature and corresponding phase transition between states with different Chern numbers. The latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic flux piercing through the junction area in a three-terminal geometry. The topological regime of the system can be identified by nonlocal conductance quantization that we compute explicitly for a particular parametrization of the scattering matrix in the case where each reservoir is connected by a single channel.
Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured in tunneling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor/semiconductor nanowires. On the other hand, two dimensional systems offer the alternative approach to confine Ma jorana channels within planar Josephson junctions, in which the phase difference {phi} between the superconducting leads represents an additional tuning knob predicted to drive the system into the topological phase at lower magnetic fields. Here, we report the observation of phase-dependent zero-bias conductance peaks measured by tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to {phi} ~ {pi} significantly reduces the critical field at which the zero-bias peak appears, with respect to {phi} = 0. The phase and magnetic field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures and scalable to complex geometries needed for topological quantum computing.