Do you want to publish a course? Click here

Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures

102   0   0.0 ( 0 )
 Added by Bilu Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials family with its many members and different properties has recently drawn great attention. Thanks to their atomic thickness and smooth surface, 2D materials can be constructed into heterostructures or homostructures in the fashion of out-of-plane perpendicular stacking or in-plane lateral stitching, resulting in unexpected physical and chemical properties and applications in many areas. In particular, 2D metal-semiconductor heterostructures or homostructures (MSHSs) which integrate 2D metals and 2D semiconductors, have shown great promise in future integrated electronics and energy-related applications. In this review, MSHSs with different structures and dimensionalities are first introduced, followed by several ways to prepare them. Their applications in electronics and optoelectronics, energy storage and conversion, and their use as platforms to exploit new physics are then discussed. Finally, we give our perspectives about the challenges and future research directions in this emerging field.



rate research

Read More

121 - Yanyan Duan , De-Yi Wang , 2021
Metal halide perovskites (MHPs) have become a promising candidate in a myriad of applications, such as light-emitting diodes, solar cells, lasing, photodetectors, photocatalysis, transistors, etc. This is related to the synergy of their excellent features, including high photoluminescence quantum yields, narrow and tunable emission, long charge carrier lifetimes, broad absorption spectrum along with high extinction absorptions coefficients, among others. However, the main bottleneck is the poor stability of the MHPs under ambient conditions. This is imposing severe restrictions with respect to their industrialized applications and commercialization. In this context, metal oxide (MOx) coatings have recently emerged as an efficient strategy towards overcoming the stabilities issues as well as retain the excellent properties of the MHPs, and therefore facilitate the development of the related devices stabilities and performances.This review provides a summary of the recent progress on synthetic methods, enhanced features, the techniques to assess the MHPs-MOxcomposites, and applications of the [email protected], novel approaches to fabricate the composites and new applications of the composites are also reported in this review for the first time. This is rounded by a critical outlook about the current MHPs stability issues and the further direction to ensure a bright future of MHPs@MOx
60 - Nadine Gachter 2020
The thermoelectric properties of a nanoscale germanium segment connected by aluminium nanowires are studied using scanning thermal microscopy. The germanium segment of 168,nm length features atomically sharp interfaces to the aluminium wires and is surrounded by an Al$_2$O$_3$ shell. The temperature distribution along the self-heated nanowire is measured as a function of the applied electrical current, for both Joule and Peltier effects. An analysis is developed that is able to extract the thermal and thermoelectric properties including thermal conductivity, the thermal boundary resistance to the substrate and the Peltier coefficient from a single measurement. Our investigations demonstrate the potential of quantitative measurements of temperature around self-heated devices and structures down to the scattering length of heat carriers.
In this work, we theoretically and experimentally investigate the working principle and non-volatile memory (NVM) functionality of 2D $alpha$-In$_2$Se$_3$ based ferroelectric-semiconductor-metal-junction (FeSMJ). First, we analyze the semiconducting and ferroelectric properties of $alpha$-In$_2$Se$_3$ van-der-Waals (vdW) stack via experimental characterization and first-principle simulations. Then, we develop a FeSMJ device simulation framework by self-consistently solving Landau-Ginzburg-Devonshire (LGD) equation, Poissons equation, and charge-transport equations. Based on the extracted FeS parameters, our simulation results show good agreement with the experimental characteristics of our fabricated $alpha$-In$_2$Se$_3$ based FeSMJ. Our analysis suggests that the vdW gap between the metal and FeS plays a key role to provide FeS polarization-dependent modulation of Schottky barrier heights. Further, we show that the thickness scaling of FeS leads to a reduction in read/write voltage and an increase in distinguishability. Array-level analysis of FeSMJ NVM suggests a 5.47x increase in sense margin, 18.18x reduction in area and lower read-write power with respect to Fe insulator tunnel junction (FTJ).
We demonstrate that the confocal laser scanning microscopy (CLSM) provides a non-destructive, highly-efficient characterization method for large-area epitaxial graphene and graphene nanostructures on SiC substrates, which can be applied in ambient air without sample preparation and is insusceptible to surface charging or surface contamination. Based on the variation of reflected intensity from regions covered by interfacial layer, single layer, bilayer, or few layer graphene, and through the correlation to the results from Raman spectroscopy and SPM, CLSM images with a high resolution (around 150 nm) reveal that the intensity contrast has distinct feature for undergrown graphene (mixing of dense, parallel graphene nanoribbons and interfacial layer), continuous graphene, and overgrown graphene. Moreover, CLSM has a real acquisition time hundreds of times faster per unit area than the supplementary characterization methods. We believe that the confocal laser scanning microscope will be an indispensable tool for mass-produced epitaxial graphene or applicable 2D materials.
Developing novel techniques for depositing transition metal dichalcogenides is crucial for the industrial adoption of 2D materials in optoelectronics. In this work, the lateral growth of molybdenum disulfide (MoS2) over an insulating surface is demonstrated using electrochemical deposition. By fabricating a new type of microelectrodes, MoS2 2D films grown from TiN electrodes across opposite sides have been connected over an insulating substrate, hence, forming a lateral device structure through only one lithography and deposition step. Using a variety of characterization techniques, the growth rate of MoS2 has been shown to be highly anisotropic with lateral to vertical growth ratios exceeding 20-fold. Electronic and photo-response measurements on the device structures demonstrate that the electrodeposited MoS2 layers behave like semiconductors, confirming their potential for photodetection applications. This lateral growth technique paves the way towards room temperature, scalable and site-selective production of various transition metal dichalcogenides and their lateral heterostructures for 2D materials-based fabricated devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا