Do you want to publish a course? Click here

Power Iteration for Tensor PCA

89   0   0.0 ( 0 )
 Added by Jiaoyang Huang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the power iteration algorithm for the spiked tensor model, as introduced in [44]. We give necessary and sufficient conditions for the convergence of the power iteration algorithm. When the power iteration algorithm converges, for the rank one spiked tensor model, we show the estimators for the spike strength and linear functionals of the signal are asymptotically Gaussian; for the multi-rank spiked tensor model, we show the estimators are asymptotically mixtures of Gaussian. This new phenomenon is different from the spiked matrix model. Using these asymptotic results of our estimators, we construct valid and efficient confidence intervals for spike strengths and linear functionals of the signals.



rate research

Read More

91 - Yufei Yi , Matey Neykov 2020
In this paper, we propose a cone projected power iteration algorithm to recover the first principal eigenvector from a noisy positive semidefinite matrix. When the true principal eigenvector is assumed to belong to a convex cone, the proposed algorithm is fast and has a tractable error. Specifically, the method achieves polynomial time complexity for certain convex cones equipped with fast projection such as the monotone cone. It attains a small error when the noisy matrix has a small cone-restricted operator norm. We supplement the above results with a minimax lower bound of the error under the spiked covariance model. Our numerical experiments on simulated and real data, show that our method achieves shorter run time and smaller error in comparison to the ordinary power iteration and some sparse principal component analysis algorithms if the principal eigenvector is in a convex cone.
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension $ntimes p$ and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here each of the principal components $mathbf{v}_1,dots,mathbf{v}_r$ has at most $s_0$ non-zero entries. We are particularly interested in the high dimensional regime wherein $p$ is comparable to, or even much larger than $n$. In an influential paper, cite{johnstone2004sparse} introduced a simple algorithm that estimates the support of the principal vectors $mathbf{v}_1,dots,mathbf{v}_r$ by the largest entries in the diagonal of the empirical covariance. This method can be shown to identify the correct support with high probability if $s_0le K_1sqrt{n/log p}$, and to fail with high probability if $s_0ge K_2 sqrt{n/log p}$ for two constants $0<K_1,K_2<infty$. Despite a considerable amount of work over the last ten years, no practical algorithm exists with provably better support recovery guarantees. Here we analyze a covariance thresholding algorithm that was recently proposed by cite{KrauthgamerSPCA}. On the basis of numerical simulations (for the rank-one case), these authors conjectured that covariance thresholding correctly recover the support with high probability for $s_0le Ksqrt{n}$ (assuming $n$ of the same order as $p$). We prove this conjecture, and in fact establish a more general guarantee including higher-rank as well as $n$ much smaller than $p$. Recent lower bounds cite{berthet2013computational, ma2015sum} suggest that no polynomial time algorithm can do significantly better. The key technical component of our analysis develops new bounds on the norm of kernel random matrices, in regimes that were not considered before.
We study the statistical problem of estimating a rank-one sparse tensor corrupted by additive Gaussian noise, a model also known as sparse tensor PCA. We show that for Bernoulli and Bernoulli-Rademacher distributed signals and emph{for all} sparsity levels which are sublinear in the dimension of the signal, the sparse tensor PCA model exhibits a phase transition called the emph{all-or-nothing phenomenon}. This is the property that for some signal-to-noise ratio (SNR) $mathrm{SNR_c}$ and any fixed $epsilon>0$, if the SNR of the model is below $left(1-epsilonright)mathrm{SNR_c}$, then it is impossible to achieve any arbitrarily small constant correlation with the hidden signal, while if the SNR is above $left(1+epsilon right)mathrm{SNR_c}$, then it is possible to achieve almost perfect correlation with the hidden signal. The all-or-nothing phenomenon was initially established in the context of sparse linear regression, and over the last year also in the context of sparse 2-tensor (matrix) PCA, Bernoulli group testing, and generalized linear models. Our results follow from a more general result showing that for any Gaussian additive model with a discrete uniform prior, the all-or-nothing phenomenon follows as a direct outcome of an appropriately defined near-orthogonality property of the support of the prior distribution.
We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank even-order real symmetric tensors. This algorithm applies the tensor power method of Kolda-Mayo to a certain modified tensor, constructed from a matrix flattening of the original tensor, and then uses deflation steps. Numerical simulations indicate SPM is roughly one order of magnitude faster than state-of-the-art algorithms, while performing robustly for low-rank tensors subjected to additive noise. We obtain rigorous guarantees for SPM regarding convergence and global optima, for tensors of rank up to roughly the square root of the number of tensor entries, by drawing on results from classical algebraic geometry and dynamical systems. In a second contribution, we extend SPM to compute De Lathauwers symmetric block term tensor decompositions. As an application of the latter decomposition, we provide a method-of-moments for generalized principal component analysis.
After a rich history in medicine, randomisation control trials both simple and complex are in increasing use in other areas such as web-based AB testing and planning and design decisions. A main objective is to be able to measure parameters, and contrasts in particular, while guarding against biases from hidden confounders. After careful definitions of classical entities such as contrasts, an algebraic method based on circuits is introduced which gives a wide choice of randomisation schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا