Do you want to publish a course? Click here

Towards a physical understanding of the thermal background in large ground-based telescopes

145   0   0.0 ( 0 )
 Added by Leonard Burtscher
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ground-based thermal-infrared observations have a unique scientific potential, but are also extremely challenging due to the need to accurately subtract the high thermal background. Since the established techniques of chopping and nodding need to be modified for observations with the future mid-infrared ELT imager and spectrograph (METIS), we investigate the sources of thermal background subtraction residuals. Our aim is to either remove or at least minimise the need for nodding in order to increase the observing efficiency for METIS. To this end we need to improve our knowledge about the origin of chop residuals and devise observing methods to remove them most efficiently, i.e. with the slowest possible nodding frequency. Thanks to dedicated observations with VLT/VISIR and GranTeCan/CanariCam, we have successfully traced the origin of three kinds of chopping residuals to (1) the entrance window, (2) the spiders and (3) other warm emitters in the pupil, in particular the VLT M3 mirror cell in its parking position. We conclude that, in order to keep chopping residuals stable over a long time (and therefore allow for slower nodding cycles), the pupil illumination needs to be kept constant, i.e. (imaging) observations should be performed in pupil-stabilised, rather than field-stabilised mode, with image de-rotation in the post-processing pipeline. This is now foreseen as the default observing concept for all METIS imaging modes.



rate research

Read More

Lucky Imaging combined with a low order adaptive optics system has given the highest resolution images ever taken in the visible or near infrared of faint astronomical objects. This paper describes a new instrument that has already been deployed on the WHT 4.2m telescope on La Palma, with particular emphasis on the optical design and the predicted system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow virtually full sky coverage with faint natural guide stars. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.
156 - Sang Chul KIM 2011
We present an analysis of the scientific (refereed) paper productivity of the current largest (diameter >8 m) ground-based optical(-infrared) telescopes during the ten year period from 2000 to 2009. The telescopes for which we have gathered and analysed the scientific publication data are the two 10 m Keck telescopes, the four 8.2 m Very Large Telescopes (VLT), the two 8.1 m Gemini telescopes, the 8.2 m Subaru telescope, and the 9.2 m Hobby-Eberly Telescope (HET). We have analysed the rate of papers published in various astronomical journals produced by using these telescopes. While the total numbers of papers from these observatories are largest for the VLT followed by Keck, Gemini, Subaru, and HET, the number of papers produced by each component of the telescopes are largest for Keck followed by VLT, Subaru, Gemini, and HET. In 2009, each telescope of the Keck, VLT, Gemini, Subaru, and HET observatories produced 135, 109, 93, 107, and 5 refereed papers, respectively. We have shown that each telescope of the Keck, VLT, Gemini, and Subaru observatories is producing 2.1 +/- 0.9 Nature and Science papers annually and the rate of these papers among all the refereed papers produced by using that telescope is 1.7 +/- 0.8 %. Extending this relation, we propose that this ratio of the number of Nature and Science papers over the number of whole refereed papers that will be produced by future extremely large telescopes (ELTs) will be remained similar. From the comparison of the publication trends of the above telescopes, we suggest that (i) having more than one telescope of the same kind at the same location and (ii) increasing the number of instruments available at the telescope are good ways to maximize the paper productivity.
59 - Craig Mackay 2019
Astronomers working with faint targets will benefit greatly from improved image quality on current and planned ground-based telescopes. At present, most adaptive optic systems are targeted at the highest resolution with bright guide stars. We demonstrate a significantly new approach to measuring low-order wavefront errors by using a pupil-plane curvature wavefront sensor design. By making low order wavefront corrections we can deliver significant improvements in image resolution in the visible on telescopes in the 2.5m to 8.2m range on good astronomical sites. As a minimum the angular resolution will be improved by a factor of 2.5 to 3 under any reasonable conditions and, with further correction and image selection, even sharper images may be obtained routinely. We re-examine many of the assumptions about what may be achieved with faint reference stars to achieve this performance. We show how our new design of curvature wavefront sensor combined with wavefront fitting routines based on radon transforms allow this performance to be achieved routinely. Simulations over a wide range of conditions match the performance already achieved in runs with earli
The highest resolution images ever taken in the visible were obtained by combining Lucky Imaging and low order adaptive optics. This paper describes a new instrument to be deployed on the WHT 4.2m and GTC 10.4 m telescopes on La Palma, with particular emphasis on the optical design and the expected system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow dramatically fainter reference stars to be used, allowing virtually full sky coverage with a natural guide star. This paper also describes a significant improvements in the efficiency of Lucky Imaging, important advances in wavefront reconstruction with curvature sensors and the results of simulations and sensitivity limits. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is likely to be the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا