Do you want to publish a course? Click here

AOLI-- Adaptive Optics Lucky Imager: Diffraction Limited Imaging in the Visible on Large Ground-Based Telescopes

165   0   0.0 ( 0 )
 Added by Craig Mackay
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The highest resolution images ever taken in the visible were obtained by combining Lucky Imaging and low order adaptive optics. This paper describes a new instrument to be deployed on the WHT 4.2m and GTC 10.4 m telescopes on La Palma, with particular emphasis on the optical design and the expected system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow dramatically fainter reference stars to be used, allowing virtually full sky coverage with a natural guide star. This paper also describes a significant improvements in the efficiency of Lucky Imaging, important advances in wavefront reconstruction with curvature sensors and the results of simulations and sensitivity limits. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is likely to be the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.



rate research

Read More

The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.
373 - S. Velasco , R. Rebolo , C. Mackay 2015
In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars ({it I/} $sim$ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151$pm$0.005 arcsec and a plate scale of 55.0$pm$0.3 mas/pixel. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkH$alpha$ 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkH$alpha$ 263AB (0.42 arcsec separation).
Lucky Imaging combined with a low order adaptive optics system has given the highest resolution images ever taken in the visible or near infrared of faint astronomical objects. This paper describes a new instrument that has already been deployed on the WHT 4.2m telescope on La Palma, with particular emphasis on the optical design and the predicted system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow virtually full sky coverage with faint natural guide stars. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
59 - Craig Mackay 2019
Astronomers working with faint targets will benefit greatly from improved image quality on current and planned ground-based telescopes. At present, most adaptive optic systems are targeted at the highest resolution with bright guide stars. We demonstrate a significantly new approach to measuring low-order wavefront errors by using a pupil-plane curvature wavefront sensor design. By making low order wavefront corrections we can deliver significant improvements in image resolution in the visible on telescopes in the 2.5m to 8.2m range on good astronomical sites. As a minimum the angular resolution will be improved by a factor of 2.5 to 3 under any reasonable conditions and, with further correction and image selection, even sharper images may be obtained routinely. We re-examine many of the assumptions about what may be achieved with faint reference stars to achieve this performance. We show how our new design of curvature wavefront sensor combined with wavefront fitting routines based on radon transforms allow this performance to be achieved routinely. Simulations over a wide range of conditions match the performance already achieved in runs with earli
The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0farcs1 brown dwarf binary GJ569Bab. We took 50000 $I$-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique using the primary star GJ569A as a suitable PSF reference which exhibits an $I$-band magnitude of $7.78pm0.03$. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at $4farcs 92 pm 0farcs05$ from GJ569A. We measure a separation of $98.4 pm 1.1$ mas and $I$-band magnitudes of $13.86 pm 0.03$ and $14.48 pm 0.03$ and $I-J$ colors of 2.72$pm$0.08 and 2.83$pm$0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A down to magnitude I$sim$ 17 at distances larger than 1arcsec. The $I-J$ colors measured are consistent with M8.5-M9 spectral types for the Ba and Bb components. The available dynamical, photometric and spectroscopic data are consistent with a binary system with Ba being slightly (10-20%) more massive than Bb. We obtain new orbital parameters which are in good agreement with those in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا