Do you want to publish a course? Click here

SubICap: Towards Subword-informed Image Captioning

71   0   0.0 ( 0 )
 Added by Naeha Sharif
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing Image Captioning (IC) systems model words as atomic units in captions and are unable to exploit the structural information in the words. This makes representation of rare words very difficult and out-of-vocabulary words impossible. Moreover, to avoid computational complexity, existing IC models operate over a modest sized vocabulary of frequent words, such that the identity of rare words is lost. In this work we address this common limitation of IC systems in dealing with rare words in the corpora. We decompose words into smaller constituent units subwords and represent captions as a sequence of subwords instead of words. This helps represent all words in the corpora using a significantly lower subword vocabulary, leading to better parameter learning. Using subword language modeling, our captioning system improves various metric scores, with a training vocabulary size approximately 90% less than the baseline and various state-of-the-art word-level models. Our quantitative and qualitative results and analysis signify the efficacy of our proposed approach.



rate research

Read More

In recent years, the biggest advances in major Computer Vision tasks, such as object recognition, handwritten-digit identification, facial recognition, and many others., have all come through the use of Convolutional Neural Networks (CNNs). Similarly, in the domain of Natural Language Processing, Recurrent Neural Networks (RNNs), and Long Short Term Memory networks (LSTMs) in particular, have been crucial to some of the biggest breakthroughs in performance for tasks such as machine translation, part-of-speech tagging, sentiment analysis, and many others. These individual advances have greatly benefited tasks even at the intersection of NLP and Computer Vision, and inspired by this success, we studied some existing neural image captioning models that have proven to work well. In this work, we study some existing captioning models that provide near state-of-the-art performances, and try to enhance one such model. We also present a simple image captioning model that makes use of a CNN, an LSTM, and the beam search1 algorithm, and study its performance based on various qualitative and quantitative metrics.
Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and image--sentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.
Despite continuously improving performance, contemporary image captioning models are prone to hallucinating objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.
Research in image captioning has mostly focused on English because of the availability of image-caption paired datasets in this language. However, building vision-language systems only for English deprives a large part of the world population of AI technologies benefit. On the other hand, creating image-caption paired datasets for every target language is expensive. In this work, we present a novel unsupervised cross-lingual method to generate image captions in a target language without using any image-caption corpus in the source or target languages. Our method relies on (i) a cross-lingual scene graph to sentence translation process, which learns to decode sentences in the target language from a cross-lingual encoding space of scene graphs using a sentence parallel (bitext) corpus, and (ii) an unsupervised cross-modal feature mapping which seeks to map an encoded scene graph features from image modality to language modality. We verify the effectiveness of our proposed method on the Chinese image caption generation task. The comparisons against several existing methods demonstrate the effectiveness of our approach.
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., a man playing a guitar). While such tasks are useful to verify that a machine understands the content of an image, they are not engaging to humans as captions. With this in mind we define a new task, Personality-Captions, where the goal is to be as engaging to humans as possible by incorporating controllable style and personality traits. We collect and release a large dataset of 201,858 of such captions conditioned over 215 possible traits. We build models that combine existing work from (i) sentence representations (Mazare et al., 2018) with Transformers trained on 1.7 billion dialogue examples; and (ii) image representations (Mahajan et al., 2018) with ResNets trained on 3.5 billion social media images. We obtain state-of-the-art performance on Flickr30k and COCO, and strong performance on our new task. Finally, online evaluations validate that our task and models are engaging to humans, with our best model close to human performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا