Do you want to publish a course? Click here

Neural Image Captioning

88   0   0.0 ( 0 )
 Added by Lakshay Sharma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In recent years, the biggest advances in major Computer Vision tasks, such as object recognition, handwritten-digit identification, facial recognition, and many others., have all come through the use of Convolutional Neural Networks (CNNs). Similarly, in the domain of Natural Language Processing, Recurrent Neural Networks (RNNs), and Long Short Term Memory networks (LSTMs) in particular, have been crucial to some of the biggest breakthroughs in performance for tasks such as machine translation, part-of-speech tagging, sentiment analysis, and many others. These individual advances have greatly benefited tasks even at the intersection of NLP and Computer Vision, and inspired by this success, we studied some existing neural image captioning models that have proven to work well. In this work, we study some existing captioning models that provide near state-of-the-art performances, and try to enhance one such model. We also present a simple image captioning model that makes use of a CNN, an LSTM, and the beam search1 algorithm, and study its performance based on various qualitative and quantitative metrics.



rate research

Read More

While many BERT-based cross-modal pre-trained models produce excellent results on downstream understanding tasks like image-text retrieval and VQA, they cannot be applied to generation tasks directly. In this paper, we propose XGPT, a new method of Cross-modal Generative Pre-Training for Image Captioning that is designed to pre-train text-to-image caption generators through three novel generation tasks, including Image-conditioned Masked Language Modeling (IMLM), Image-conditioned Denoising Autoencoding (IDA), and Text-conditioned Image Feature Generation (TIFG). As a result, the pre-trained XGPT can be fine-tuned without any task-specific architecture modifications to create state-of-the-art models for image captioning. Experiments show that XGPT obtains new state-of-the-art results on the benchmark datasets, including COCO Captions and Flickr30k Captions. We also use XGPT to generate new image captions as data augmentation for the image retrieval task and achieve significant improvement on all recall metrics.
Most image captioning models are autoregressive, i.e. they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. Recently, non-autoregressive decoding has been proposed in machine translation to speed up the inference time by generating all words in parallel. Typically, these models use the word-level cross-entropy loss to optimize each word independently. However, such a learning process fails to consider the sentence-level consistency, thus resulting in inferior generation quality of these non-autoregressive models. In this paper, we propose a Non-Autoregressive Image Captioning (NAIC) model with a novel training paradigm: Counterfactuals-critical Multi-Agent Learning (CMAL). CMAL formulates NAIC as a multi-agent reinforcement learning system where positions in the target sequence are viewed as agents that learn to cooperatively maximize a sentence-level reward. Besides, we propose to utilize massive unlabeled images to boost captioning performance. Extensive experiments on MSCOCO image captioning benchmark show that our NAIC model achieves a performance comparable to state-of-the-art autoregressive models, while brings 13.9x decoding speedup.
Despite continuously improving performance, contemporary image captioning models are prone to hallucinating objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.
We investigate the effect of different model architectures, training objectives, hyperparameter settings and decoding procedures on the diversity of automatically generated image captions. Our results show that 1) simple decoding by naive sampling, coupled with low temperature is a competitive and fast method to produce diverse and accurate caption sets; 2) training with CIDEr-based reward using Reinforcement learning harms the diversity properties of the resulting generator, which cannot be mitigated by manipulating decoding parameters. In addition, we propose a new metric AllSPICE for evaluating both accuracy and diversity of a set of captions by a single value.
Training large-scale image captioning (IC) models demands access to a rich and diverse set of training examples, gathered from the wild, often from noisy alt-text data. However, recent modeling approaches to IC often fall short in terms of performance in this case, because they assume a clean annotated dataset (as opposed to the noisier alt-text--based annotations), and employ an end-to-end generation approach, which often lacks both controllability and interpretability. We address these problems by breaking down the task into two simpler, more controllable tasks -- skeleton prediction and skeleton-based caption generation. Specifically, we show that selecting content words as skeletons} helps in generating improved and denoised captions when leveraging rich yet noisy alt-text--based uncurated datasets. We also show that the predicted English skeletons can be further cross-lingually leveraged to generate non-English captions, and present experimental results covering caption generation in French, Italian, German, Spanish and Hindi. We also show that skeleton-based prediction allows for better control of certain caption properties, such as length, content, and gender expression, providing a handle to perform human-in-the-loop semi-automatic corrections.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا