Do you want to publish a course? Click here

Separated transport relaxation scales and interband scattering in SrRuO$_3$, CaRuO$_3$, and Sr$_2$RuO$_4$ thin films

92   0   0.0 ( 0 )
 Added by Youcheng Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anomalous charge transport observed in some strongly correlated metals raises questions as to the universal applicability of Landau Fermi liquid theory. The coherence temperature $T_{FL}$ for normal metals is usually taken to be the temperature below which $T^2$ is observed in the resistivity. Below this temperature, a Fermi liquid with well-defined quasiparticles is expected. However, metallic ruthenates in the Ruddlesden-Popper family, frequently show non-Drude low-energy optical conductivity and unusual $omega/T$ scaling, despite the frequent observation of $T^2$ dc resistivity. Herein we report time-domain THz spectroscopy measurements of several different high-quality metallic ruthenate thin films and show that the optical conductivity can be interpreted in more conventional terms. In all materials, the conductivity has a two-Drude peak lineshape at low temperature and a crossover to a one-Drude peak lineshape at higher temperatures. The two-component low-temperature conductivity is indicative of two well-separated current relaxation rates for different conduction channels. We discuss three particular possibilities for the separation of rates: (a) Strongly energy-dependent inelastic scattering; (b) an almost-conserved pseudomomentum operator that overlaps with the current, giving rise to the narrower Drude peak; (c) the presence of multiple conduction channels that undergoes a crossover to stronger interband scattering at higher temperatures. None of these scenarios require the existence of exotic quasiparticles. The results may give insight into the possible significance of Hunds coupling in determining interband coupling in these materials. Our results also show a route towards understanding the violation of Matthiessens rule in this class of materials and deviations from the Gurzhi scaling relations in Fermi liquids.

rate research

Read More

We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
We have carried out extensive comparative studies of the structural and transport properties of CaRuO$_3$ thin films grown under various oxygen pressure. We find that the preferred orientation and surface roughness of the films are strongly affected by the oxygen partial pressure during growth. This in turn affects the electrical and magnetic properties of the films. Films grown under high oxygen pressure have the least surface roughness and show transport characteristics of a good metal down to the lowest temperature measured. On the other hand, films grown under low oxygen pressures have high degree of surface roughness and show signatures of ferromagnetism. We could verify that the low frequency resistance fluctuations (noise) in these films arise due to thermally activated fluctuations of local defects and that the defect density matches with the level of disorder seen in the films through structural characterizations.
We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO$_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO$_3$ films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature, T$_C$, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T$_C$ decrease to a decrease in the density of states (N$_o$). Namely, in the thin film geometry, the hybridized Ru-d$_yz,zx$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N$_o$.
141 - K. von Arx , F. Forte , M. Horio 2020
We present a combined oxygen $K$-egde x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) study of the bilayer ruthenate Ca$_3$Ru$_2$O$_7$. Our RIXS experiments on Ca$_3$Ru$_2$O$_7$ were carried out on the overlapping in-plane and inner apical oxygen resonances, which are distinguishable from the outer apical one. Comparison to equivalent oxygen $K$-edge spectra recorded on band-Mott insulating Ca$_2$RuO$_4$ is made. In contrast to Ca$_2$RuO$_4$ spectra, which contain excitations linked to Mott physics, Ca$_3$Ru$_2$O$_7$ spectra feature only intra-$t_{2g}$ ones that do not directly involve the Coulomb energy scale. As found in Ca$_2$RuO$_4$, we resolve two intra-$t_{2g}$ excitations in Ca$_3$Ru$_2$O$_7$. Moreover, the lowest lying excitation in Ca$_3$Ru$_2$O$_7$ shows a significant dispersion, revealing a collective character differently from what is observed in Ca$_2$RuO$_4$. Theoretical modelling supports the interpretation of this lowest energy excitation in Ca$_3$Ru$_2$O$_7$ as a magnetic transverse mode with multi-particle character, whereas the corresponding excitation in Ca$_2$RuO$_4$ is assigned to combined longitudinal and transverse spin modes. These fundamental differences are discussed in terms of the inequivalent magnetic ground-state manifestations in Ca$_2$RuO$_4$ and Ca$_3$Ru$_2$O$_7$.
The synthesis of stoichiometric Sr$_2$RuO$_4$ thin films has been a challenge because of the high volatility of ruthenium oxide precursors, which gives rise to ruthenium vacancies in the films. Ru vacancies greatly affect the transport properties and electronic phase behavior of Sr$_2$RuO$_4$, but their direct detection is difficult due to their atomic dimensions and low concentration. We applied polarized X-ray absorption spectroscopy at the oxygen K-edge and confocal Raman spectroscopy to Sr$_2$RuO$_4$ thin films synthesized under different conditions. The results show that these methods can serve as sensitive probes of the electronic and vibrational properties of Ru vacancies, respectively. The intensities of the vacancy-related spectroscopic features extracted from these measurements are well correlated with the transport properties of the films. The methodology introduced here can thus help to understand and control the stoichiometry and transport properties in films of Sr$_2$RuO$_4$ and other ruthenates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا