Do you want to publish a course? Click here

Electronic and vibrational signatures of ruthenium vacancies in Sr$_2$RuO$_4$ thin films

115   0   0.0 ( 0 )
 Added by Gideok Kim
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The synthesis of stoichiometric Sr$_2$RuO$_4$ thin films has been a challenge because of the high volatility of ruthenium oxide precursors, which gives rise to ruthenium vacancies in the films. Ru vacancies greatly affect the transport properties and electronic phase behavior of Sr$_2$RuO$_4$, but their direct detection is difficult due to their atomic dimensions and low concentration. We applied polarized X-ray absorption spectroscopy at the oxygen K-edge and confocal Raman spectroscopy to Sr$_2$RuO$_4$ thin films synthesized under different conditions. The results show that these methods can serve as sensitive probes of the electronic and vibrational properties of Ru vacancies, respectively. The intensities of the vacancy-related spectroscopic features extracted from these measurements are well correlated with the transport properties of the films. The methodology introduced here can thus help to understand and control the stoichiometry and transport properties in films of Sr$_2$RuO$_4$ and other ruthenates.



rate research

Read More

We review electronic transport in superconducting junctions with Sr$_2$RuO$_4$. Transport measurements provide evidence for chiral domain walls and, therefore, chiral superconductivity in superconducting Sr$_2$RuO$_4$, but so far, the symmetry of the underlying superconducting state remains inconclusive. Further studies involving density of states measurements and spin-polarised transport in local/non--local Sr$_2$RuO$_4$ junctions with magnetic materials could lead to fundamental discoveries and a better understanding of the superconducting state.
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities, such as superconductivity (SC) and spin density wave (SDW), by functional renormalization group. According to the experiment, the positive strain (from lattice expansion) causes charge transfer to the $gamma$-band and consequently Lifshitz reconstruction of the Fermi surface. Our theoretical calculations show that within a limited range of positive strain a p-wave superconducting order is realized. However, as the strain is increased further the system develops into the SDW state well before the Lifshitz transition is reached. We also consider the effect of negative strains (from lattice constriction). As the strain increases, there is a transition from p-wave SC state to nodal s-wave SC state. The theoretical results are discussed in comparison to experiment and can be checked by further experiments.
We measure the Shubnikov-de Haas effect in thin-film Sr$_2$RuO$_4$ grown on an (LaAlO$_3$)$_{0.29}$-(SrAl$_{1/2}$Ta$_{1/2}$O$_3$)$_{0.71}$ (LSAT) substrate. We detect all three known Fermi surfaces and extract the Fermi surface volumes, cyclotron effective masses, and quantum lifetimes. We show that the electronic structure is nearly identical to that of single-crystal Sr$_2$RuO$_4$, and that the quasiparticle lifetime is consistent with the Tc of comparably clean, single-crystal Sr$_2$RuO$_4$. Unlike single-crystal Sr$_2$RuO$_4$, where the quantum and transport lifetimes are roughly equal, we find that the transport lifetime is $1.3pm0.1$ times longer than the quantum lifetime. This suggests that extended (rather than point) defects may be the dominant source of quasiparticle scattering in these films. To test this idea, we perform cross-sectional STEM and find that out-of-phase boundaries extending the entire thickness of the film occur with a density that is consistent with the quantum mean free path. The long quasiparticle lifetimes make these films ideal for studying the unconventional superconducting state in Sr$_2$RuO$_4$ through the fabrication of devices -- such as planar tunnel junctions and SQUIDs.
We report strain engineering of superconductivity in RuO$_2$ singlecrystalline films, which are epitaxially grown on rutile TiO$_2$ and MgF$_2$ substrates with various crystal orientations. Systematic mappings between the superconducting transition temperature and the lattice parameters reveal that shortening of specific ruthenium-oxygen bonds is a common feature among the superconducting RuO$_2$ films. Ab initio calculations of electronic and phononic structures for the strained RuO$_2$ films suggest the importance of soft phonon modes for emergence of the superconductivity. The findings indicate that simple transition metal oxides such as with the rutile structure may be suitable for further exploring superconductivity by controlling phonon modes through the epitaxial strain.
438 - Yong Hu , Xiang Chen , S.-T. Peng 2019
The pseudogap, d-wave superconductivity and electron-boson coupling are three intertwined key ingredients in the phase diagram of the cuprates. Sr$_2$IrO$_4$ is a 5d-electron counterpart of the cuprates in which both the pseudogap and a d-wave instability have been observed. Here, we report spectroscopic evidence for the presence of the third key player in electron-doped Sr$_2$IrO$_4$: electron-boson coupling. A kink in nodal dispersion is observed with an energy scale of ~50 meV. The strength of the kink changes with doping, but the energy scale remains the same. These results provide the first noncuprate platform for exploring the relationship between the pseudogap, d-wave instability and electron-boson coupling in doped Mott insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا