Do you want to publish a course? Click here

Identifiability of Bifactor Models

98   0   0.0 ( 0 )
 Added by Guanhua Fang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The bifactor model and its extensions are multidimensional latent variable models, under which each item measures up to one subdimension on top of the primary dimension(s). Despite their wide applications to educational and psychological assessments, this type of multidimensional latent variable models may suffer from non-identifiability, which can further lead to inconsistent parameter estimation and invalid inference. The current work provides a relatively complete characterization of identifiability for the linear and dichotomous bifactor models and the linear extended bifactor model with correlated subdimensions. In addition, similar results for the two-tier models are also developed. Illustrative examples are provided on checking model identifiability through inspecting the factor loading structure. Simulation studies are reported that examine estimation consistency when the identifiability conditions are/are not satisfied.



rate research

Read More

78 - Guanhua Fang , Jingchen Liu , 2017
This paper establishes fundamental results for statistical inference of diagnostic classification models (DCM). The results are developed at a high level of generality, applicable to essentially all diagnostic classification models. In particular, we establish identifiability results of various modeling parameters, notably item response probabilities, attribute distribution, and Q-matrix-induced partial information structure. Consistent estimators are constructed. Simulation results show that these estimators perform well under various modeling settings. We also use a real example to illustrate the new method. The results are stated under the setting of general latent class models. For DCM with a specific parameterization, the conditions may be adapted accordingly.
141 - Denis Chetverikov 2012
Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics. It is therefore important to design effective and practical econometric methods for testing this prediction in empirical analysis. This paper develops a general nonparametric framework for testing monotonicity of a regression function. Using this framework, a broad class of new tests is introduced, which gives an empirical researcher a lot of flexibility to incorporate ex ante information she might have. The paper also develops new methods for simulating critical values, which are based on the combination of a bootstrap procedure and new selection algorithms. These methods yield tests that have correct asymptotic size and are asymptotically nonconservative. It is also shown how to obtain an adaptive rate optimal test that has the best attainable rate of uniform consistency against models whose regression function has Lipschitz-continuous first-order derivatives and that automatically adapts to the unknown smoothness of the regression function. Simulations show that the power of the new tests in many cases significantly exceeds that of some prior tests, e.g. that of Ghosal, Sen, and Van der Vaart (2000). An application of the developed procedures to the dataset of Ellison and Ellison (2011) shows that there is some evidence of strategic entry deterrence in pharmaceutical industry where incumbents may use strategic investment to prevent generic entries when their patents expire.
142 - JaeHoan Kim , Jaeyong Lee 2021
Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which are supposed to model certain effects. The covariance kernels have unknown parameters which are estimated by the EM-algorithm or Markov Chain Monte Carlo. The estimated parameters are keys to the inference of the features of the regression functions, but identifiability of these parameters has not been investigated. In this paper, we prove identifiability of covariance kernel parameters in two radial basis mixed kernel GPR and radial basis and periodic mixed kernel GPR. We also provide some examples about non-identifiable cases in such mixed kernel GPRs.
Inference of evolutionary trees and rates from biological sequences is commonly performed using continuous-time Markov models of character change. The Markov process evolves along an unknown tree while observations arise only from the tips of the tree. Rate heterogeneity is present in most real data sets and is accounted for by the use of flexible mixture models where each site is allowed its own rate. Very little has been rigorously established concerning the identifiability of the models currently in common use in data analysis, although non-identifiability was proven for a semi-parametric model and an incorrect proof of identifiability was published for a general parametric model (GTR+Gamma+I). Here we prove that one of the most widely used models (GTR+Gamma) is identifiable for generic parameters, and for all parameter choices in the case of 4-state (DNA) models. This is the first proof of identifiability of a phylogenetic model with a continuous distribution of rates.
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which correspond to the observed variables. We give a graphical condition that is sufficient for the Jacobian matrix of the parametrization map to be full rank, which entails that the parametrization is generically finite-to-one, a fact that is sometimes also referred to as local identifiability. We also derive a graphical condition that is necessary for such identifiability. Finally, we give a condition under which generic parameter identifiability can be determined from identifiability of a model associated with a subgraph. The power of these criteria is assessed via an exhaustive algebraic computational study on models with 4, 5, and 6 observable variables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا