Do you want to publish a course? Click here

Reciprocal Metasurfaces for On-axis Reflective Optical Computing

98   0   0.0 ( 0 )
 Added by Ali Momeni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Analog computing has emerged as a promising candidate for real-time and parallel continuous data processing. This paper presents a reciprocal way for realizing asymmetric optical transfer functions (OTFs) in the reflection side of the on-axis processing channels. It is rigorously demonstrated that the presence of Cross-polarization Exciting Normal Polarizabilities (CPENP) of a reciprocal metasurface circumvents the famous challenge of Greens function approach in implementation of on-axis reflective optical signal processing while providing dual computing channels under orthogonal polarizations. Following a comprehensive theoretical discussion and as a proof of concept, an all-dielectric optical metasurface is elaborately designed to exhibit the desired surface polarizabilities, thereby reflecting the first derivative and extracting the edges of images impinging from normal direction. The proposed study offers a flexible design method for on-axis metasurface-based optical signal processing and also, dramatically facilitates the experimental setup required for ultrafast analog computation and image processing.



rate research

Read More

Optical limiters are nonlinear devices that feature decreasing transmittance with increasing incident optical intensity, and thus can protect sensitive components from high-intensity illumination. The ideal optical limiter reflects rather than absorbs light in its active (limiting) state, minimizing risk of damage to the limiter itself. Previous efforts to realize reflective limiters were based on embedding nonlinear layers into relatively thick multilayer photonic structures, resulting in substantial fabrication complexity, reduced speed and, in some instances, limited working bandwidth. We overcome these tradeoffs by using the insulator-to-metal transition in vanadium dioxide (VO2) to achieve intensity-dependent modulation of resonant transmission through aperture antennas. Due to the dramatic change of optical properties across the insulator-to-metal transition, low-quality-factor resonators were sufficient to achieve high on-off ratios in device transmittance. As a result, our ultra-thin reflective limiter (thickness ~1/100 of the free-space wavelength) is broadband in terms of operating wavelength (> 2 um at 10 um) and angle of incidence (up to ~50$deg$ away from the normal).
Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered local in that their operation depends on the responses of individual meta-units. In contrast, nonlocal metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon, and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront-shaping requires neither unusual materials and fabrication nor active control of individual meta-units.
Efficient hybrid plasmonic-photonic metasurfaces that simultaneously take advantage of the potential of both pure metallic and all-dielectric nanoantennas are identified as an emerging technology in flat optics. Nevertheless, post-fabrication tunable hybrid metasurfaces are still elusive. Here, we present a reconfigurable hybrid metasurface platform by incorporating the phase-change material Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) into metal-dielectric meta-atoms for active and non-volatile tuning of properties of light. We systematically design a reduced-dimension meta-atom, which selectively controls the fundamental hybrid plasmonic-photonic resonances of the metasurface via the dynamic change of optical constants of GST without compromising the scattering efficiency. As a proof-of-concept, we experimentally demonstrate miniaturized tunable metasurfaces that control the amplitude and phase of incident light necessary for high-contrast optical switching and anomalous to specular beam deflection, respectively. Finally, we leverage a deep learning-based approach to present an intuitive low-dimensional visualization of the enhanced range of response reconfiguration enabled by the addition of GST. Our findings further substantiate dynamically tunable hybrid metasurfaces as promising candidates for the development of small-footprint energy harvesting, imaging, and optical signal processing devices.
III-V solar cells dominate the high efficiency charts, but with significantly higher cost than other solar cells. Ultrathin III-V solar cells can exhibit lower production costs and immunity to short carrier diffusion lengths caused by radiation damage, dislocations, or native defects. Nevertheless, solving the incomplete optical absorption of sub-micron layers presents a challenge for light-trapping structures. Simple photonic crystals have high diffractive efficiencies, which are excellent for narrow-band applications. Random structures a broadband response instead but suffer from low diffraction efficiencies. Quasirandom (hyperuniform) structures lie in between providing high diffractive efficiency over a target wavelength range, broader than simple photonic crystals, but narrower than a random structure. In this work, we present a design method to evolve a simple photonic crystal into a quasirandom structure by modifying the spatial-Fourier space in a controlled manner. We apply these structures to an ultrathin GaAs solar cell of only 100 nm. We predict a photocurrent for the tested quasirandom structure of 25.3 mA/cm$^2$, while a planar structure would be limited to 16.1 mA/cm$^2$. The modified spatial-Fourier space in the quasirandom structure increases the amount of resonances, with a progression from discrete number of peaks to a continuum in the absorption. The enhancement in photocurrent is stable under angle variations because of this continuum. We also explore the robustness against changes in the real-space distribution of the quasirandom structures using different numerical seeds, simulating variations in a self-assembly method.
In this work we present a new mechanism for designing phase-gradient metasurfaces (PGMs) to control an electromagnetic wavefront with high efficiency. Specifically, we design a transmission-type PGM formed by a periodic subwavelength metallic slit array filled with identical dielectrics of different heights. It is found that when Fabry-Perot (FP) resonances occur locally inside the dielectric regions, in addition to the common phenomenon of complete transmission, the transmitted phase differences between two adjacent slits are exactly the same, being a non-zero constant. These local FP resonances ensure total phase shift across a supercell that can fully cover the range of 0 to 2Pi, satisfying the design requirements of PGMs. More studies reveal that due to local FP resonances, there is a one-to-one correspondence between the phase difference and the permittivity of the filled dielectric. A similar approach can be extended to the reflection-type case and other wavefront transformation, creating new opportunities for wave manipulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا