No Arabic abstract
We construct a top-down holographic model of Weyl semimetal states using $(3+1)$-dimensional $mathcal{N}=4$ supersymmetric $SU(N_c)$ Yang-Mills theory, at large $N_c$ and strong coupling, coupled to a number $N_f ll N_c$ of $mathcal{N}=2$ hypermultiplets with mass $m$. A $U(1)$ subgroup of the R-symmetry acts on the hypermultiplet fermions as an axial symmetry. In the presence of a constant external axial gauge field in a spatial direction, $b$, we find the defining characteristic of a Weyl semi-metal: a quantum phase transition as $m/b$ increases, from a topological state with non-zero anomalous Hall conductivity to a trivial insulator. The transition is first order. Remarkably, the anomalous Hall conductivity is independent of the hypermultiplet mass, taking the value dictated by the axial anomaly. At non-zero temperature the transition remains first order, and the anomalous Hall conductivity acquires non-trivial dependence on the hypermultiplet mass and temperature.
We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directions. We show that at finite temperature, i.e. in the AdS-Schwarzschild background, the B field has a stabilizing effect on the mesons and chiral symmetry breaking occurs for a sufficiently large value of the B field. Then we turn to the electric case of a B field in the temporal direction and one spatial boundary direction. In this case, there is a singular region in which it is necessary to turn on a gauge field on the brane in order to ensure reality of the brane action. We find that the brane embeddings are attracted towards this region. Far away from this region, in the weak field case at zero temperature, we investigate the meson spectrum and find a mass shift similar to the Stark effect.
We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.
We present a systematic study of holographic correlators in a vast array of SCFTs with non-maximal superconformal symmetry. These theories include 4d $mathcal{N}=2$ SCFTs from D3-branes near F-theory singularities, 5d Seiberg exceptional theories and 6d E-string theory, as well as 3d and 4d phenomenological models with probe flavor branes. We consider current multiplets and their generalizations with higher weights, dual to massless and massive super gluons in the bulk. At leading order in the inverse central charge expansion, connected four-point functions of these operators correspond to tree-level gluon scattering amplitudes in AdS. We show that all such tree-level four-point amplitudes in all these theories are fully fixed by symmetries and consistency conditions and explicitly construct them. Our results encode a wealth of SCFT data and exhibit various interesting emergent structures. These include Parisi-Sourlas-like dimensional reductions, hidden conformal symmetry and an AdS version of the color-kinematic duality.
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity in five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted $Sp(1)$ structure, which extends the quaternionic Kahler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.
It is a long-standing conjecture that any CFT with a large central charge and a large gap $Delta_{text{gap}}$ in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this conjecture by deriving numerical bounds on bulk Wilson coefficients in terms of $Delta_{text{gap}}$ using the conformal bootstrap. Our bounds exhibit the scaling in $Delta_{text{gap}}$ expected from dimensional analysis in the bulk. Our main tools are dispersive sum rules that provide a dictionary between CFT dispersion relations and S-matrix dispersion relations in appropriate limits. This dictionary allows us to apply recently-developed flat-space methods to construct positive CFT functionals. We show how AdS$_{4}$ naturally resolves the infrared divergences present in 4D flat-space bounds. Our results imply the validity of twice-subtracted dispersion relations for any S-matrix arising from the flat-space limit of AdS/CFT.