No Arabic abstract
We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.
We propose a new non-holographic formulation of AdS/CFT correspondence, according to which quantum gravity on AdS and its dual non-gravitational field theory both live in the same number D of dimensions. The field theory, however, appears (D-1)-dimensional because the interactions do not propagate in one of the dimensions. The D-dimensional action for the field theory can be identified with the sum over (D-1)-dimensional actions with all possible values $Lambda$ of the UV cutoff, so that the extra hidden dimension can be identified with $Lambda$. Since there are no interactions in the extra dimension, most of the practical results of standard holographic AdS/CFT correspondence transcribe to non-holographic AdS/CFT without any changes. However, the implications on black-hole entropy change significantly. The maximal black-hole entropy now scales with volume, while the Bekenstein-Hawking entropy is interpreted as the minimal possible black-hole entropy. In this way, the non-holographic AdS/CFT correspondence offers a simple resolution of the black-hole information paradox, consistent with a recently proposed gravitational crystal.
With a view to understanding extended-BMS symmetries in the framework of the $AdS_4/CFT_3$ correspondence, asymptotically AdS geometries are constructed with null impulsive shockwaves involving a discontinuity in superrotation parameters. The holographic dual is proposed to be a two-dimensional Euclidean defect conformal field localized on a particular timeslice in a three-dimensional conformal field theory on de Sitter spacetime. The defect conformal field theory generates a natural action of the Virasoro algebra. The large radius of curvature limit $elltoinfty$ yields spacetimes with nontrivial extended-BMS charges.
Field theories in black hole spacetimes undergo dimensional reduction near horizon (in the Rindler limit) to two dimensional conformal field theories. We investigate this enhancement of symmetries in the context of gauge/gravity duality by considering Rindler space as boundary of Anti-de Sitter space in three spacetime dimensions. We show that the loxodromy conjugacy class of the SO(2,2) isometry group is responsible for generating the special conformal transformations on the boundary under RG flow. We use this approach to present an alternative derivation of the two-point function in Rindler space using AdS/CFT correspondence.
We study Lorentzian supersymmetric configurations in $D=4$ and $D=5$ gauged $mathcal{N}=2$ supergravity. We show that there are smooth $1/2$ BPS solutions which are asymptotically AdS$_{4}$ and AdS$_{5}$ with a planar boundary, a compact spacelike direction and with a Wilson line on that circle. There are solitons where the $S^{1}$ shrinks smoothly to zero in the interior, with a magnetic flux through the circle determined by the Wilson line, which are AdS analogues of the Melvin fluxtube. There is also a solution with a constant gauge field, which is pure AdS. Both solutions preserve half of the supersymmetries at a special value of the Wilson line. There is a phase transition between these two saddle-points as a function of the Wilson line precisely at the supersymmetric point. Thus, the supersymmetric solutions are degenerate, at least at the supergravity level. We extend this discussion to one of the Romans solutions in four dimensions when the Euclidean boundary is $S^{1}timesSigma_{g}$ where $Sigma_{g}$ is a Riemann surface with genus $g > 0$. We speculate that the supersymmetric state of the CFT on the boundary is dual to a superposition of the two degenerate geometries.
A common method to prepare states in AdS/CFT is to perform the Euclidean path integral with sources turned on for single-trace operators. These states can be interpreted as coherent states of the bulk quantum theory associated to Lorentzian initial data on a Cauchy slice. In this paper, we discuss the extent to which arbitrary initial data can be obtained in this way. We show that the initial data must be analytic and define the subset of it that can be prepared by imposing bulk regularity. Turning this around, we show that for generic analytic initial data the corresponding Euclidean section contains singularities coming from delta function sources in the bulk. We propose an interpretation of these singularities as non-perturbative objects in the microscopic theory.