No Arabic abstract
Visual Question Answering (VQA) is a challenging multimodal task to answer questions about an image. Many works concentrate on how to reduce language bias which makes models answer questions ignoring visual content and language context. However, reducing language bias also weakens the ability of VQA models to learn context prior. To address this issue, we propose a novel learning strategy named CCB, which forces VQA models to answer questions relying on Content and Context with language Bias. Specifically, CCB establishes Content and Context branches on top of a base VQA model and forces them to focus on local key content and global effective context respectively. Moreover, a joint loss function is proposed to reduce the importance of biased samples and retain their beneficial influence on answering questions. Experiments show that CCB outperforms the state-of-the-art methods in terms of accuracy on VQA-CP v2.
Most Visual Question Answering (VQA) models suffer from the language prior problem, which is caused by inherent data biases. Specifically, VQA models tend to answer questions (e.g., what color is the banana?) based on the high-frequency answers (e.g., yellow) ignoring image contents. Existing approaches tackle this problem by creating delicate models or introducing additional visual annotations to reduce question dependency while strengthening image dependency. However, they are still subject to the language prior problem since the data biases have not been even alleviated. In this paper, we introduce a self-supervised learning framework to solve this problem. Concretely, we first automatically generate labeled data to balance the biased data, and propose a self-supervised auxiliary task to utilize the balanced data to assist the base VQA model to overcome language priors. Our method can compensate for the data biases by generating balanced data without introducing external annotations. Experimental results show that our method can significantly outperform the state-of-the-art, improving the overall accuracy from 49.50% to 57.59% on the most commonly used benchmark VQA-CP v2. In other words, we can increase the performance of annotation-based methods by 16% without using external annotations.
Multi-modality fusion technologies have greatly improved the performance of neural network-based Video Description/Caption, Visual Question Answering (VQA) and Audio Visual Scene-aware Dialog (AVSD) over the recent years. Most previous approaches only explore the last layers of multiple layer feature fusion while omitting the importance of intermediate layers. To solve the issue for the intermediate layers, we propose an efficient Quaternion Block Network (QBN) to learn interaction not only for the last layer but also for all intermediate layers simultaneously. In our proposed QBN, we use the holistic text features to guide the update of visual features. In the meantime, Hamilton quaternion products can efficiently perform information flow from higher layers to lower layers for both visual and text modalities. The evaluation results show our QBN improved the performance on VQA 2.0, even though using surpass large scale BERT or visual BERT pre-trained models. Extensive ablation study has been carried out to testify the influence of each proposed module in this study.
We propose to boost VQA by leveraging more powerful feature extractors by improving the representation ability of both visual and text features and the ensemble of models. For visual feature, some detection techniques are used to improve the detector. For text feature, we adopt BERT as the language model and find that it can significantly improve VQA performance. Our solution won the second place in the VQA Challenge 2019.
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology (ABP)? To build such a system, three challenges need to be addressed. First, we need to create a visual question answering (VQA) dataset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Due to privacy concerns, pathology images are usually not publicly available. Besides, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. The second challenge is: since it is difficult to hire highly experienced pathologists to create pathology visual questions and answers, the resulting pathology VQA dataset may contain errors. Training pathology VQA models using these noisy or even erroneous data will lead to problematic models that cannot generalize well on unseen images. The third challenge is: the medical concepts and knowledge covered in pathology question-answer (QA) pairs are very diverse while the number of QA pairs available for modeling training is limited. How to learn effective representations of diverse medical concepts based on limited data is technically demanding. In this paper, we aim to address these three challenges. To our best knowledge, our work represents the first one addressing the pathology VQA problem. To deal with the issue that a publicly available pathology VQA dataset is lacking, we create PathVQA dataset. To address the second challenge, we propose a learning-by-ignoring approach. To address the third challenge, we propose to use cross-modal self-supervised learning. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed learning-by-ignoring method and cross-modal self-supervised learning methods.
In this work, we introduce Video Question Answering in temporal domain to infer the past, describe the present and predict the future. We present an encoder-decoder approach using Recurrent Neural Networks to learn temporal structures of videos and introduce a dual-channel ranking loss to answer multiple-choice questions. We explore approaches for finer understanding of video content using question form of fill-in-the-blank, and managed to collect 109,895 video clips with duration over 1,000 hours from TACoS, MPII-MD, MEDTest 14 datasets, while the corresponding 390,744 questions are generated from annotations. Extensive experiments demonstrate that our approach significantly outperforms the compared baselines.