No Arabic abstract
Multi-modality fusion technologies have greatly improved the performance of neural network-based Video Description/Caption, Visual Question Answering (VQA) and Audio Visual Scene-aware Dialog (AVSD) over the recent years. Most previous approaches only explore the last layers of multiple layer feature fusion while omitting the importance of intermediate layers. To solve the issue for the intermediate layers, we propose an efficient Quaternion Block Network (QBN) to learn interaction not only for the last layer but also for all intermediate layers simultaneously. In our proposed QBN, we use the holistic text features to guide the update of visual features. In the meantime, Hamilton quaternion products can efficiently perform information flow from higher layers to lower layers for both visual and text modalities. The evaluation results show our QBN improved the performance on VQA 2.0, even though using surpass large scale BERT or visual BERT pre-trained models. Extensive ablation study has been carried out to testify the influence of each proposed module in this study.
Exploiting relationships between visual regions and question words have achieved great success in learning multi-modality features for Visual Question Answering (VQA). However, we argue that existing methods mostly model relations between individual visual regions and words, which are not enough to correctly answer the question. From humans perspective, answering a visual question requires understanding the summarizations of visual and language information. In this paper, we proposed the Multi-modality Latent Interaction module (MLI) to tackle this problem. The proposed module learns the cross-modality relationships between latent visual and language summarizations, which summarize visual regions and question into a small number of latent representations to avoid modeling uninformative individual region-word relations. The cross-modality information between the latent summarizations are propagated to fuse valuable information from both modalities and are used to update the visual and word features. Such MLI modules can be stacked for several stages to model complex and latent relations between the two modalities and achieves highly competitive performance on public VQA benchmarks, VQA v2.0 and TDIUC . In addition, we show that the performance of our methods could be significantly improved by combining with pre-trained language model BERT.
Visual Question Answering (VQA) is a challenging multimodal task to answer questions about an image. Many works concentrate on how to reduce language bias which makes models answer questions ignoring visual content and language context. However, reducing language bias also weakens the ability of VQA models to learn context prior. To address this issue, we propose a novel learning strategy named CCB, which forces VQA models to answer questions relying on Content and Context with language Bias. Specifically, CCB establishes Content and Context branches on top of a base VQA model and forces them to focus on local key content and global effective context respectively. Moreover, a joint loss function is proposed to reduce the importance of biased samples and retain their beneficial influence on answering questions. Experiments show that CCB outperforms the state-of-the-art methods in terms of accuracy on VQA-CP v2.
Learning effective fusion of multi-modality features is at the heart of visual question answering. We propose a novel method of dynamically fusing multi-modal features with intra- and inter-modality information flow, which alternatively pass dynamic information between and across the visual and language modalities. It can robustly capture the high-level interactions between language and vision domains, thus significantly improves the performance of visual question answering. We also show that the proposed dynamic intra-modality attention flow conditioned on the other modality can dynamically modulate the intra-modality attention of the target modality, which is vital for multimodality feature fusion. Experimental evaluations on the VQA 2.0 dataset show that the proposed method achieves state-of-the-art VQA performance. Extensive ablation studies are carried out for the comprehensive analysis of the proposed method.
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology (ABP)? To build such a system, three challenges need to be addressed. First, we need to create a visual question answering (VQA) dataset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Due to privacy concerns, pathology images are usually not publicly available. Besides, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. The second challenge is: since it is difficult to hire highly experienced pathologists to create pathology visual questions and answers, the resulting pathology VQA dataset may contain errors. Training pathology VQA models using these noisy or even erroneous data will lead to problematic models that cannot generalize well on unseen images. The third challenge is: the medical concepts and knowledge covered in pathology question-answer (QA) pairs are very diverse while the number of QA pairs available for modeling training is limited. How to learn effective representations of diverse medical concepts based on limited data is technically demanding. In this paper, we aim to address these three challenges. To our best knowledge, our work represents the first one addressing the pathology VQA problem. To deal with the issue that a publicly available pathology VQA dataset is lacking, we create PathVQA dataset. To address the second challenge, we propose a learning-by-ignoring approach. To address the third challenge, we propose to use cross-modal self-supervised learning. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed learning-by-ignoring method and cross-modal self-supervised learning methods.
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .