No Arabic abstract
We present a sufficient condition for the stability property of extremal graph problems that can be solved via Zykovs symmetrisation. Our criterion is stated in terms of an analytic limit version of the problem. We show that, for example, it applies to the inducibility problem for an arbitrary complete bipartite graph $B$, which asks for the maximum number of induced copies of $B$ in an $n$-vertex graph, and to the inducibility problem for $K_{2,1,1,1}$ and $K_{3,1,1}$, the only complete partite graphs on at most five vertices for which the problem was previously open.
A graph $F$ is called a fractalizer if for all $n$ the only graphs which maximize the number of induced copies of $F$ on $n$ vertices are the balanced iterated blow ups of $F$. While the net graph is not a fractalizer, we show that the net is nearly a fractalizer. Let $N(n)$ be the maximum number of induced copies of the net graph among all graphs on $n$ vertices. For sufficiently large $n$ we show that, $N(n) = x_1cdot x_2 cdot x_3 cdot x_4 cdot x_5 cdot x_6 + N(x_1) + N(x_2) + N(x_3) + N(x_4) + N(x_5) + N(x_6)$ where $sigma x_i = n$ and all $x_i$ are as equal as possible. Furthermore, we show that the unique graph which maximizes $N(6^k)$ is the balanced iterated blow up of the net for $k$ sufficiently large. We expand on the standard flag algebra and stability techniques through more careful counting and numerical optimization techniques.
A long standing open problem in extremal graph theory is to describe all graphs that maximize the number of induced copies of a path on four vertices. The character of the problem changes in the setting of oriented graphs, and becomes more tractable. Here we resolve this problem in the setting of oriented graphs without transitive triangles.
We determine the inducibility of all tournaments with at most $4$ vertices together with the extremal constructions. The $4$-vertex tournament containing an oriented $C_3$ and one source vertex has a particularly interesting extremal construction. It is an unbalanced blow-up of an edge, where the sink vertex is replaced by a quasi-random tournament and the source vertex is iteratively replaced by a copy of the construction itself.
Blowfish privacy is a recent generalisation of differential privacy that enables improved utility while maintaining privacy policies with semantic guarantees, a factor that has driven the popularity of differential privacy in computer science. This paper relates Blowfish privacy to an important measure of privacy loss of information channels from the communications theory community: min-entropy leakage. Symmetry in an input data neighbouring relation is central to known connections between differential privacy and min-entropy leakage. But while differential privacy exhibits strong symmetry, Blowfish neighbouring relations correspond to arbitrary simple graphs owing to the frameworks flexible privacy policies. To bound the min-entropy leakage of Blowfish-private mechanisms we organise our analysis over symmetrical partitions corresponding to orbits of graph automorphism groups. A construction meeting our bound with asymptotic equality demonstrates tightness.
The beautiful Beraha-Kahane-Weiss theorem has found many applications within graph theory, allowing for the determination of the limits of root of graph polynomials in settings as vast as chromatic polynomials, network reliability, and generating polynomials related to independence and domination. Here we extend the class of functions to which the BKW theorem can be applied, and provide some applications in combinatorics.