Blowfish privacy is a recent generalisation of differential privacy that enables improved utility while maintaining privacy policies with semantic guarantees, a factor that has driven the popularity of differential privacy in computer science. This paper relates Blowfish privacy to an important measure of privacy loss of information channels from the communications theory community: min-entropy leakage. Symmetry in an input data neighbouring relation is central to known connections between differential privacy and min-entropy leakage. But while differential privacy exhibits strong symmetry, Blowfish neighbouring relations correspond to arbitrary simple graphs owing to the frameworks flexible privacy policies. To bound the min-entropy leakage of Blowfish-private mechanisms we organise our analysis over symmetrical partitions corresponding to orbits of graph automorphism groups. A construction meeting our bound with asymptotic equality demonstrates tightness.
We study the information leakage to a guessing adversary in zero-error source coding. The source coding problem is defined by a confusion graph capturing the distinguishability between source symbols. The information leakage is measured by the ratio of the adversarys successful guessing probability after and before eavesdropping the codeword, maximized over all possible source distributions. Such measurement under the basic adversarial model where the adversary makes a single guess and allows no distortion between its estimator and the true sequence is known as the maximum min-entropy leakage or the maximal leakage in the literature. We develop a single-letter characterization of the optimal normalized leakage under the basic adversarial model, together with an optimum-achieving scalar stochastic mapping scheme. An interesting observation is that the optimal normalized leakage is equal to the optimal compression rate with fixed-length source codes, both of which can be simultaneously achieved by some deterministic coding schemes. We then extend the leakage measurement to generalized adversarial models where the adversary makes multiple guesses and allows certain level of distortion, for which we derive single-letter lower and upper bounds.
Side channels represent a broad class of security vulnerabilities that have been demonstrated to exist in many applications. Because completely eliminating side channels often leads to prohibitively high overhead, there is a need for a principled trade-off between cost and leakage. In this paper, we make a case for the use of maximal leakage to analyze such trade-offs. Maximal leakage is an operationally interpretable leakage metric designed for side channels. We present the most useful theoretical properties of maximal leakage from previous work and demonstrate empirically that conventional metrics such as mutual information and channel capacity underestimate the threat posed by side channels whereas maximal leakage does not. We also study the cost-leakage trade-off as an optimization problem using maximal leakage. We demonstrate that not only can this problem be represented as a linear program, but also that optimal protection can be achieved using a combination of at most two deterministic schemes.
Machine learning models are known to memorize the unique properties of individual data points in a training set. This memorization capability can be exploited by several types of attacks to infer information about the training data, most notably, membership inference attacks. In this paper, we propose an approach based on information leakage for guaranteeing membership privacy. Specifically, we propose to use a conditional form of the notion of maximal leakage to quantify the information leaking about individual data entries in a dataset, i.e., the entrywise information leakage. We apply our privacy analysis to the Private Aggregation of Teacher Ensembles (PATE) framework for privacy-preserving classification of sensitive data and prove that the entrywise information leakage of its aggregation mechanism is Schur-concave when the injected noise has a log-concave probability density. The Schur-concavity of this leakage implies that increased consensus among teachers in labeling a query reduces its associated privacy cost. Finally, we derive upper bounds on the entrywise information leakage when the aggregation mechanism uses Laplace distributed noise.
We put forward a model of action-based randomization mechanisms to analyse quantitative information flow (QIF) under generic leakage functions, and under possibly adaptive adversaries. This model subsumes many of the QIF models proposed so far. Our main contributions include the following: (1) we identify mild general conditions on the leakage function under which it is possible to derive general and significant results on adaptive QIF; (2) we contrast the efficiency of adaptive and non-adaptive strategies, showing that the latter are as efficient as the former in terms of length up to an expansion factor bounded by the number of available actions; (3) we show that the maximum information leakage over strategies, given a finite time horizon, can be expressed in terms of a Bellman equation. This can be used to compute an optimal finite strategy recursively, by resorting to standard methods like backward induction.
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defined as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. New codes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
Tobias Edwards
,Benjamin I. P. Rubinstein
,Zuhe Zhang
.
(2020)
.
"A Graph Symmetrisation Bound on Channel Information Leakage under Blowfish Privacy"
.
Benjamin Rubinstein
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا