Do you want to publish a course? Click here

39 Hints to Facilitate the Use of Semantics for Data on Agriculture and Nutrition

62   0   0.0 ( 0 )
 Added by Romain David
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we report on the outputs and adoption of the Agrisemantics Working Group of the Research Data Alliance (RDA), consisting of a set of recommendations to facilitate the adoption of semantic technologies and methods for the purpose of data interoperability in the field of agriculture and nutrition. From 2016 to 2019, the group gathered researchers and practitioners at the crossing point between information technology and agricultural science, to study all aspects in the life cycle of semantic resources: conceptualization, edition, sharing, standardization, services, alignment, long term support. First, the working group realized a landscape study, a study of the uses of semantics in agrifood, then collected use cases for the exploitation of semantics resources-a generic term to encompass vocabularies, terminologies, thesauri, ontologies. The resulting requirements were synthesized into 39 hints for users and developers of semantic resources, and providers of semantic resource services. We believe adopting these recommendations will engage agrifood sciences in a necessary transition to leverage data production, sharing and reuse and the adoption of the FAIR data principles. The paper includes examples of adoption of those requirements, and a discussion of their contribution to the field of data science.



rate research

Read More

Water is an essential resource for all living organisms. The continuous and increasing use of pesticides in agricultural and urban activities results in the pollution of water resources and represents an environmental risk. To control and reduce pesticide pollution, reliable multi-residue methods for the detection of these compounds in water are needed. In this context, the present work aimed at providing an analytical method for the simultaneous determination of trace levels of 51 target pesticides in water and applying it to the investigation of target pesticides in two agriculture-impacted areas of interest. The method developed, based on an isotopic dilution approach and on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry, is fast, simple, and to a large extent automated, and allows the analysis of most of the target compounds in compliance with European regulations. Further application of the method to the analysis of selected water samples collected at the lowest stretches of the two largest river basins of Catalonia (NE Spain), Llobregat and Ter, revealed the presence of a wide suite of pesticides, and some of them at concentrations above the water quality standards (irgarol and dichlorvos) or the acceptable method detection limits (methiocarb, imidacloprid, and thiacloprid), in the Llobregat, and much cleaner waters in the Ter River basin. Risk assessment of the pesticide concentrations measured in the Llobregat indicated high risk due to the presence of irgarol, dichlorvos, methiocarb, azinphos ethyl, imidacloprid, and diflufenican (hazard quotient (HQ) values>10), and an only moderate potential risk in the Ter River associated to the occurrence of bentazone and irgarol (HQ>1).
The ways in which race, ethnicity, and ancestry are used and reported in human genomics research has wide-ranging implications for how research is translated into clinical care, incorporated into public understanding, and implemented in public policy. Genetics researchers play an essential role in proactively dismantling genetic conceptions of race and in recognizing the social and structural factors that drive health disparities. Here, we offer commentary and concrete recommendations on the use and reporting of race, ethnicity, and ancestry across the arc of genetic research, including terminology, data harmonization, analysis, and reporting. While informed by our experiences as researchers in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, the recommendations are broadly applicable to basic and translational genomic research in diverse populations. To fully realize the benefit of diversifying genetics research beyond primarily European ancestry populations, we as genetics researchers need to make structural changes to the research process and within the research community. Considerable collaborative effort and ongoing reflection will be required to root out elements of racism from the field and generate scientific knowledge that yields broad and equitable benefit.
A new stream of research was born in the last decade with the goal of mining itemsets of interest using Constraint Programming (CP). This has promoted a natural way to combine complex constraints in a highly flexible manner. Although CP state-of-the-art solutions formulate the task using Boolean variables, the few attempts to adopt propositional Satisfiability (SAT) provided an unsatisfactory performance. This work deepens the study on when and how to use SAT for the frequent itemset mining (FIM) problem by defining different encodings with multiple task-driven enumeration options and search strategies. Although for the majority of the scenarios SAT-based solutions appear to be non-competitive with CP peers, results show a variety of interesting cases where SAT encodings are the best option.
Differential privacy is a definition of privacy for algorithms that analyze and publish information about statistical databases. It is often claimed that differential privacy provides guarantees against adversaries with arbitrary side information. In this paper, we provide a precise formulation of these guarantees in terms of the inferences drawn by a Bayesian adversary. We show that this formulation is satisfied by both vanilla differential privacy as well as a relaxation known as (epsilon,delta)-differential privacy. Our formulation follows the ideas originally due to Dwork and McSherry [Dwork 2006]. This paper is, to our knowledge, the first place such a formulation appears explicitly. The analysis of the relaxed definition is new to this paper, and provides some concrete guidance for setting parameters when using (epsilon,delta)-differential privacy.
Volatile organic compounds emitted by a human body form a chemical signature capable of providing invaluable information on the physiological status of an individual and, thereby, could serve as signs-of-life for detecting victims after natural or man-made disasters. In this review a database of potential biomarkers of human presence was created on the basis of existing literature reports on volatiles in human breath, skin emanation, blood, and urine. Approximate fluxes of these species from the human body were estimated and used to predict their concentrations in the vicinity of victims. The proposed markers were classified into groups of different potential for victim detection. The major classification discriminants were the capability of detection by portable, real-time analytical instruments and background levels in urban environment. The data summarized in this review are intended to assist studies on the detection of humans via chemical analysis and accelerate investigations in this area of knowledge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا