Do you want to publish a course? Click here

Improved fully automated method for the determination of medium to highly polar pesticides in surface and groundwater and application in two distinct agriculture-impacted areas

82   0   0.0 ( 0 )
 Added by Cristina Postigo
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Water is an essential resource for all living organisms. The continuous and increasing use of pesticides in agricultural and urban activities results in the pollution of water resources and represents an environmental risk. To control and reduce pesticide pollution, reliable multi-residue methods for the detection of these compounds in water are needed. In this context, the present work aimed at providing an analytical method for the simultaneous determination of trace levels of 51 target pesticides in water and applying it to the investigation of target pesticides in two agriculture-impacted areas of interest. The method developed, based on an isotopic dilution approach and on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry, is fast, simple, and to a large extent automated, and allows the analysis of most of the target compounds in compliance with European regulations. Further application of the method to the analysis of selected water samples collected at the lowest stretches of the two largest river basins of Catalonia (NE Spain), Llobregat and Ter, revealed the presence of a wide suite of pesticides, and some of them at concentrations above the water quality standards (irgarol and dichlorvos) or the acceptable method detection limits (methiocarb, imidacloprid, and thiacloprid), in the Llobregat, and much cleaner waters in the Ter River basin. Risk assessment of the pesticide concentrations measured in the Llobregat indicated high risk due to the presence of irgarol, dichlorvos, methiocarb, azinphos ethyl, imidacloprid, and diflufenican (hazard quotient (HQ) values>10), and an only moderate potential risk in the Ter River associated to the occurrence of bentazone and irgarol (HQ>1).



rate research

Read More

In this paper, we report on the outputs and adoption of the Agrisemantics Working Group of the Research Data Alliance (RDA), consisting of a set of recommendations to facilitate the adoption of semantic technologies and methods for the purpose of data interoperability in the field of agriculture and nutrition. From 2016 to 2019, the group gathered researchers and practitioners at the crossing point between information technology and agricultural science, to study all aspects in the life cycle of semantic resources: conceptualization, edition, sharing, standardization, services, alignment, long term support. First, the working group realized a landscape study, a study of the uses of semantics in agrifood, then collected use cases for the exploitation of semantics resources-a generic term to encompass vocabularies, terminologies, thesauri, ontologies. The resulting requirements were synthesized into 39 hints for users and developers of semantic resources, and providers of semantic resource services. We believe adopting these recommendations will engage agrifood sciences in a necessary transition to leverage data production, sharing and reuse and the adoption of the FAIR data principles. The paper includes examples of adoption of those requirements, and a discussion of their contribution to the field of data science.
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in July to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron, and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% on average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated with the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and < 1 (meaning low risk) for the remaining compounds diuron, linuron, and MCPA. The PBR treatment yielded variable removals depending on the compound, similar to conventional wastewater treatment plants. This study provides new data on the capacity of icroalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
60 - Mary Nilsson 2020
In this paper, we provide guidance on how standard safety analyses and reporting of clinical trial safety data may need to be modified, given the potential impact of the COVID-19 pandemic. The impact could include missed visits, alternative methods for assessments (such as virtual visits), alternative locations for assessments (such as local labs), and study drug interruptions. We focus on safety planning for Phase 2-4 clinical trials and integrated summaries for submissions. Starting from the recommended safety analyses proposed in white papers and a workshop, created as part of an FDA/PHUSE collaboration (PHUSE 2013, 2015, 2017, 2019), we assess what modifications might be needed. Impact from COVID-19 will likely affect treatment arms equally, so analyses of adverse events from controlled data can, to a large extent, remain unchanged. However, interpretation of summaries from uncontrolled data (summaries that include open-label extension data) will require even more caution than usual. Special consideration will be needed for safety topics of interest, especially events expected to have a higher incidence due to a COVID-19 infection or due to quarantine or travel restrictions (e.g., depression). Analyses of laboratory measurements may need to be modified to account for the combination of measurements from local and central laboratories.
The equation of state with light clusters for nuclear and stellar matter is determined using chemical equilibrium constants evaluated from the analysis of the recently published (Xe$+$Sn) heavy ion data, corresponding to three reactions with different isotopic contents of the emission source. The measured multiplicities are used to extract the thermodynamic properties, and an in-medium correction to the ideal gas internal partition function of the clusters is included in the analysis. This in-medium correction and its respective uncertainty are calculated via a Bayesian analysis, with the unique hypothesis that the different nuclear species in a given sample must correspond to a unique common value for the density of the expanding source. Different parameter sets for the correction are tested, and the effect of the radius of the clusters on the thermodynamics and on the chemical equilibrium constants is also addressed. It is shown that the equilibrium constants obtained are almost independent of the isospin content of the analysed systems. Finally, a comparison with a relativistic mean field model proves that data are consistent with a universal in-medium correction of the scalar $sigma$-meson coupling for nucleons bound in clusters. The obtained value, $g_s/g_s^0 = 0.92 pm 0.02$, is larger than that obtained in a previous study not including in-medium effects in the data analysis. This result implies a smaller effect on the binding energy of the clusters and, as a consequence, larger melting densities, and an increased cluster contribution in supernova matter.
114 - T. Aoyama , Y. Shibusa 2006
We present a new scheme for extracting approximate values in ``the improved perturbation method, which is a sort of resummation technique capable of evaluating a series outside the radius of convergence. We employ the distribution profile of the series that is weighted by nth-order derivatives with respect to the artificially introduced parameters. By those weightings the distribution becomes more sensitive to the ``plateau structure in which the consistency condition of the method is satisfied. The scheme works effectively even in such cases that the system involves many parameters. We also propose that this scheme has to be applied to each observables separately and be analyzed comprehensively. We apply this scheme to the analysis of the IIB matrix model by the improved perturbation method obtained up to eighth order of perturbation in the former works. We consider here the possibility of spontaneous breakdown of Lorentz symmetry, and evaluate the free energy and the anisotropy of space-time extent. In the present analysis, we find an SO(10)-symmetric vacuum besides the SO(4)- and SO(7)-symmetric vacua that have been observed. It is also found that there are two distinct SO(4)-symmetric vacua that have almost the same value of free energy but the extent of space-time is different. From the approximate values of free energy, we conclude that the SO(4)-symmetric vacua are most preferred among those three types of vacua.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا