Do you want to publish a course? Click here

Mind the Gap: Cake Cutting With Separation

104   0   0.0 ( 0 )
 Added by Warut Suksompong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of fairly allocating a divisible resource, also known as cake cutting, with an additional requirement that the shares that different agents receive should be sufficiently separated from one another. This captures, for example, constraints arising from social distancing guidelines. While it is sometimes impossible to allocate a proportional share to every agent under the separation requirement, we show that the well-known criterion of maximin share fairness can always be attained. We then establish several computational properties of maximin share fairness -- for instance, the maximin share of an agent cannot be computed exactly by any finite algorithm, but can be approximated with an arbitrarily small error. In addition, we consider the division of a pie (i.e., a circular cake) and show that an ordinal relaxation of maximin share fairness can be achieved.



rate research

Read More

We study the recently introduced cake-cutting setting in which the cake is represented by an undirected graph. This generalizes the canonical interval cake and allows for modeling the division of road networks. We show that when the graph is a forest, an allocation satisfying the well-known criterion of maximin share fairness always exists. Our result holds even when separation constraints are imposed, in which case no multiplicative approximation of proportionality can be guaranteed. Furthermore, while maximin share fairness is not always achievable for general graphs, we prove that ordinal relaxations can be attained.
391 - Xiaotie Deng , Qi Qi , Amin Saberi 2009
We study the envy-free cake-cutting problem for $d+1$ players with $d$ cuts, for both the oracle function model and the polynomial time function model. For the former, we derive a $theta(({1overepsilon})^{d-1})$ time matching bound for the query complexity of $d+1$ player cake cutting with Lipschitz utilities for any $d> 1$. When the utility functions are given by a polynomial time algorithm, we prove the problem to be PPAD-complete. For measurable utility functions, we find a fully polynomial-time algorithm for finding an approximate envy-free allocation of a cake among three people using two cuts.
Cake-cutting protocols aim at dividing a ``cake (i.e., a divisible resource) and assigning the resulting portions to several players in a way that each of the players feels to have received a ``fair amount of the cake. An important notion of fairness is envy-freeness: No player wishes to switch the portion of the cake received with another players portion. Despite intense efforts in the past, it is still an open question whether there is a emph{finite bounded} envy-free cake-cutting protocol for an arbitrary number of players, and even for four players. We introduce the notion of degree of guaranteed envy-freeness (DGEF) as a measure of how good a cake-cutting protocol can approximate the ideal of envy-freeness while keeping the protocol finite bounded (trading being disregarded). We propose a new finite bounded proportional protocol for any number n geq 3 of players, and show that this protocol has a DGEF of 1 + lceil (n^2)/2 rceil. This is the currently best DGEF among known finite bounded cake-cutting protocols for an arbitrary number of players. We will make the case that improving the DGEF even further is a tough challenge, and determine, for comparison, the DGEF of selected known finite bounded cake-cutting protocols.
The long wavelength modes lost to bright foregrounds in the interferometric 21-cm surveys can partially be recovered using a forward modeling approach that exploits the non-linear coupling between small and large scales induced by gravitational evolution. In this work, we build upon this approach by considering how adding external galaxy distribution data can help to fill in these modes. We consider supplementing the 21-cm data at two different redshifts with a spectroscopic sample (good radial resolution but low number density) loosely modeled on DESI-ELG at $z=1$ and a photometric sample (high number density but poor radial resolution) similar to LSST sample at $z=1$ and $z=4$ respectively. We find that both the galaxy samples are able to reconstruct the largest modes better than only using 21-cm data, with the spectroscopic sample performing significantly better than the photometric sample despite much lower number density. We demonstrate the synergies between surveys by showing that the primordial initial density field is reconstructed better with the combination of surveys than using either of them individually. Methodologically, we also explore the importance of smoothing the density field when using bias models to forward model these tracers for reconstruction.
This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should receive a plot of a usable geometric shape, and (2) plots of different agents must be physically separated. With these requirements, the classic fairness notion of proportionality is impractical, since it may be impossible to attain any multiplicative approximation of it. In contrast, the ordinal maximin share approximation, introduced by Budish in 2011, provides meaningful fairness guarantees. We prove upper and lower bounds on achievable maximin share guarantees when the usable shapes are squares, fat rectangles, or arbitrary axes-aligned rectangles, and explore the algorithmic and query complexity of finding fair partitions in this setting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا