No Arabic abstract
The long wavelength modes lost to bright foregrounds in the interferometric 21-cm surveys can partially be recovered using a forward modeling approach that exploits the non-linear coupling between small and large scales induced by gravitational evolution. In this work, we build upon this approach by considering how adding external galaxy distribution data can help to fill in these modes. We consider supplementing the 21-cm data at two different redshifts with a spectroscopic sample (good radial resolution but low number density) loosely modeled on DESI-ELG at $z=1$ and a photometric sample (high number density but poor radial resolution) similar to LSST sample at $z=1$ and $z=4$ respectively. We find that both the galaxy samples are able to reconstruct the largest modes better than only using 21-cm data, with the spectroscopic sample performing significantly better than the photometric sample despite much lower number density. We demonstrate the synergies between surveys by showing that the primordial initial density field is reconstructed better with the combination of surveys than using either of them individually. Methodologically, we also explore the importance of smoothing the density field when using bias models to forward model these tracers for reconstruction.
Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make a statistical detection of HI in the post-reionization Universe. With the MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) survey project observing in the L-band ($856 < u < 1712$ MHz, $z < 0.66$), we can achieve the required sensitivity to measure the HI IM power spectrum on quasi-linear scales, which will provide an important complementarity to the single-dish IM MeerKAT observations. We present a purpose-built simulation pipeline that emulates the MIGHTEE observations and forecast the constraints that can be achieved on the HI power spectrum at $z = 0.27$ for $k > 0.3$ $rm{Mpc}^{-1}$ using the foreground avoidance method. We present the power spectrum estimates with the current simulation on the COSMOS field that includes contributions from HI, noise and point source models constructed from the observed MIGHTEE data. The results from our textit{visibility} based pipeline are in qualitative agreement to the already available MIGHTEE data. This paper demonstrates that MeerKAT can achieve very high sensitivity to detect HI with the full MIGHTEE survey on quasi-linear scales (signal-to-noise ratio $> 7$ at $k=0.49$ $rm{Mpc}^{-1}$) which are instrumental in probing cosmological quantities such as the spectral index of fluctuation, constraints on warm dark matter, the quasi-linear redshift space distortions and the measurement of the HI content of the Universe up to $zsim 0.5$.
Intensity mapping is a promising technique for surveying the large scale structure of our Universe from $z=0$ to $z sim 150$, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of out cosmic timeline. Examples of targeted lines include the $21,textrm{cm}$ hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line-of-sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier-Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the foreground wedge signature of spectrally smooth foregrounds.
We quantitatively assess, by means of comprehensive numerical simulations, the ability of broad-band photometric surveys to recover the broad emission line region (BLR) size in quasars under various observing conditions and for a wide range of object properties. Focusing on the general characteristics of the Large Synoptic Survey Telescope (LSST), we find that the slope of the size-luminosity relation for the BLR in quasars can be determined with unprecedented accuracy, of order a few percent, over a broad luminosity range and out to $zsim 3$. In particular, major emission lines for which the BLR size can be reliably measured with LSST include H$alpha$, MgII $lambda 2799$, CIII] $lambda 1909$, CIV $lambda 1549$, and Ly$alpha$, amounting to a total of $gtrsim 10^5$ time-delay measurements for all transitions. Combined with an estimate for the emission line velocity dispersion, upcoming photometric surveys will facilitate the estimation of black hole masses in AGN over a broad range of luminosities and redshifts, allow for refined calibrations of BLR size-luminosity-redshift relations in different transitions, as well as lead to more reliable cross-calibration with other black hole mass estimation techniques.
We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect HI clustering and weak gravitational lensing of 21cm emission in auto- and cross-correlation. Our forecasts show that high precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the HI density $Omega_{rm HI}$, the HI bias $b_{rm HI}$ and the galaxy-HI correlation coefficient $r_{rm HI-g}$.
Future total-power single-dish HI intensity mapping (HI IM) surveys have the potential to provide unprecedented insight into late time ($z < 1$) cosmology that are competitive with Stage IV dark energy surveys. However, redshifts between $0 < z < 0.2$ lie within the transmission bands of global navigation satellite services (GNSS), and even at higher redshifts out-of-band leakage from GNSS satellites may be problematic. We estimate the impact of GNSS satellites on future single-dish HI IM surveys using realistic estimates of both the total power and spectral structure of GNSS signals convolved with a model SKA beam. Using a simulated SKA HI IM survey covering 30000 sq. deg. of sky and 200 dishes, we compare the integrated GNSS emission on the sky with the expected HI signal. It is found that for frequencies $> 950$ MHz the emission from GNSS satellites will exceed the expected HI signal for all angular scales to which the SKA is sensitive when operating in single-dish mode.