Do you want to publish a course? Click here

Crowd Vetting: Rejecting Adversaries via Collaboration--with Application to Multi-Robot Flocking

69   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We characterize the advantage of using a robots neighborhood to find and eliminate adversarial robots in the presence of a Sybil attack. We show that by leveraging the opinions of its neighbors on the trustworthiness of transmitted data, robots can detect adversaries with high probability. We characterize a number of communication rounds required to achieve this result to be a function of the communication quality and the proportion of legitimate to malicious robots. This result enables increased resiliency of many multi-robot algorithms. Because our results are finite time and not asymptotic, they are particularly well-suited for problems with a time critical nature. We develop two algorithms, emph{FindSpoofedRobots} that determines trusted neighbors with high probability, and emph{FindResilientAdjacencyMatrix} that enables distributed computation of graph properties in an adversarial setting. We apply our methods to a flocking problem where a team of robots must track a moving target in the presence of adversarial robots. We show that by using our algorithms, the team of robots are able to maintain tracking ability of the dynamic target.



rate research

Read More

Effective human-robot collaboration (HRC) requires extensive communication among the human and robot teammates, because their actions can potentially produce conflicts, synergies, or both. We develop a novel augmented reality (AR) interface to bridge the communication gap between human and robot teammates. Building on our AR interface, we develop an AR-mediated, negotiation-based (ARN) framework for HRC. We have conducted experiments both in simulation and on real robots in an office environment, where multiple mobile robots work on delivery tasks. The robots could not complete the tasks on their own, but sometimes need help from their human teammate, rendering human-robot collaboration necessary. Results suggest that ARN significantly reduced the human-robot teams task completion time compared to a non-AR baseline approach.
Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. However, their cooperation ability deteriorates as the crowd grows since they typically relax the problem as a one-way Human-Robot interaction problem. In this work, we want to go beyond first-order Human-Robot interaction and more explicitly model Crowd-Robot Interaction (CRI). We propose to (i) rethink pairwise interactions with a self-attention mechanism, and (ii) jointly model Human-Robot as well as Human-Human interactions in the deep reinforcement learning framework. Our model captures the Human-Human interactions occurring in dense crowds that indirectly affects the robots anticipation capability. Our proposed attentive pooling mechanism learns the collective importance of neighboring humans with respect to their future states. Various experiments demonstrate that our model can anticipate human dynamics and navigate in crowds with time efficiency, outperforming state-of-the-art methods.
426 - S. H. Alsamhi , Brian Lee 2020
This conceptual paper overviews how blockchain technology is involving the operation of multi-robot collaboration for combating COVID-19 and future pandemics. Robots are a promising technology for providing many tasks such as spraying, disinfection, cleaning, treating, detecting high body temperature/mask absence, and delivering goods and medical supplies experiencing an epidemic COVID-19. For combating COVID-19, many heterogeneous and homogenous robots are required to perform different tasks for supporting different purposes in the quarantine area. Controlling and decentralizing multi-robot play a vital role in combating COVID-19 by reducing human interaction, monitoring, delivering goods. Blockchain technology can manage multi-robot collaboration in a decentralized fashion, improve the interaction among them to exchange information, share representation, share goals, and trust. We highlight the challenges and provide the tactical solutions enabled by integrating blockchain and multi-robot collaboration to combat COVID-19 pandemic. The framework of our conceptual proposed can increase the intelligence, decentralization, and autonomous operations of connected multi-robot collaboration in the blockchain network. We overview blockchain potential benefits to defining a framework of multi-robot collaboration applications to combat COVID-19 epidemics such as monitoring and outdoor and hospital End to End (E2E) delivery systems. Furthermore, we discuss the challenges and opportunities of integrated blockchain, multi-robot collaboration, and the Internet of Things (IoT) for combating COVID-19 and future pandemics.
In this paper we consider infinite horizon discounted dynamic programming problems with finite state and control spaces, partial state observations, and a multiagent structure. We discuss and compare algorithms that simultaneously or sequentially optimize the agents controls by using multistep lookahead, truncated rollout with a known base policy, and a terminal cost function approximation. Our methods specifically address the computational challenges of partially observable multiagent problems. In particular: 1) We consider rollout algorithms that dramatically reduce required computation while preserving the key cost improvement property of the standard rollout method. The per-step computational requirements for our methods are on the order of $O(Cm)$ as compared with $O(C^m)$ for standard rollout, where $C$ is the maximum cardinality of the constraint set for the control component of each agent, and $m$ is the number of agents. 2) We show that our methods can be applied to challenging problems with a graph structure, including a class of robot repair problems whereby multiple robots collaboratively inspect and repair a system under partial information. 3) We provide a simulation study that compares our methods with existing methods, and demonstrate that our methods can handle larger and more complex partially observable multiagent problems (state space size $10^{37}$ and control space size $10^{7}$, respectively). Finally, we incorporate our multiagent rollout algorithms as building blocks in an approximate policy iteration scheme, where successive rollout policies are approximated by using neural network classifiers. While this scheme requires a strictly off-line implementation, it works well in our computational experiments and produces additional significant performance improvement over the single online rollout iteration method.
We present situated live programming for human-robot collaboration, an approach that enables users with limited programming experience to program collaborative applications for human-robot interaction. Allowing end users, such as shop floor workers, to program collaborative robots themselves would make it easy to retask robots from one process to another, facilitating their adoption by small and medium enterprises. Our approach builds on the paradigm of trigger-action programming (TAP) by allowing end users to create rich interactions through simple trigger-action pairings. It enables end users to iteratively create, edit, and refine a reactive robot program while executing partial programs. This live programming approach enables the user to utilize the task space and objects by incrementally specifying situated trigger-action pairs, substantially lowering the barrier to entry for programming or reprogramming robots for collaboration. We instantiate situated live programming in an authoring system where users can create trigger-action programs by annotating an augmented video feed from the robots perspective and assign robot actions to trigger conditions. We evaluated this system in a study where participants (n = 10) developed robot programs for solving collaborative light-manufacturing tasks. Results showed that users with little programming experience were able to program HRC tasks in an interactive fashion and our situated live programming approach further supported individualized strategies and workflows. We conclude by discussing opportunities and limitations of the proposed approach, our system implementation, and our study and discuss a roadmap for expanding this approach to a broader range of tasks and applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا