Do you want to publish a course? Click here

Blockchain for Multi-Robot Collaboration to Combat COVID-19 and Future Pandemics

427   0   0.0 ( 0 )
 Added by Saeed Alsamhi Dr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This conceptual paper overviews how blockchain technology is involving the operation of multi-robot collaboration for combating COVID-19 and future pandemics. Robots are a promising technology for providing many tasks such as spraying, disinfection, cleaning, treating, detecting high body temperature/mask absence, and delivering goods and medical supplies experiencing an epidemic COVID-19. For combating COVID-19, many heterogeneous and homogenous robots are required to perform different tasks for supporting different purposes in the quarantine area. Controlling and decentralizing multi-robot play a vital role in combating COVID-19 by reducing human interaction, monitoring, delivering goods. Blockchain technology can manage multi-robot collaboration in a decentralized fashion, improve the interaction among them to exchange information, share representation, share goals, and trust. We highlight the challenges and provide the tactical solutions enabled by integrating blockchain and multi-robot collaboration to combat COVID-19 pandemic. The framework of our conceptual proposed can increase the intelligence, decentralization, and autonomous operations of connected multi-robot collaboration in the blockchain network. We overview blockchain potential benefits to defining a framework of multi-robot collaboration applications to combat COVID-19 epidemics such as monitoring and outdoor and hospital End to End (E2E) delivery systems. Furthermore, we discuss the challenges and opportunities of integrated blockchain, multi-robot collaboration, and the Internet of Things (IoT) for combating COVID-19 and future pandemics.



rate research

Read More

Currently, drones represent a promising technology for combating Coronavirus disease 2019 (COVID-19) due to the transport of goods, medical supplies to a given target location in the quarantine areas experiencing an epidemic outbreak. Drone missions will increasingly rely on drone collaboration, which requires the drones to reduce communication complexity and be controlled in a decentralized fashion. Blockchain technology becomes a must in industrial applications because it provides decentralized data, accessibility, immutability, and irreversibility. Therefore, Blockchain makes data public for all drones and enables drones to log information concerning world states, time, location, resources, delivery data, and drone relation to all neighbors drones. This paper introduces decentralized independent multi-drones to accomplish the task collaboratively. Improving blockchain with a consensus algorithm can improve network partitioning and scalability in order to combat COVID-19. The multi-drones task is to combat COVID-19 via monitoring and detecting, social distancing, sanitization, data analysis, delivering goods and medical supplies, and announcement while avoiding collisions with one another. We discuss End to End (E2E) delivery application of combination blockchain and multi-drone in combating COVID-19 and beyond future pandemics. Furthermore, the challenges and opportunities of our proposed framework are highlighted.
Nasopharyngeal (NP) swab sampling is an effective approach for the diagnosis of coronavirus disease 2019 (COVID-19). Medical staffs carrying out the task of collecting NP specimens are in close contact with the suspected patient, thereby posing a high risk of cross-infection. We propose a low-cost miniature robot that can be easily assembled and remotely controlled. The system includes an active end-effector, a passive positioning arm, and a detachable swab gripper with integrated force sensing capability. The cost of the materials for building this robot is 55 USD and the total weight of the functional part is 0.23kg. The design of the force sensing swab gripper was justified using Finite Element (FE) modeling and the performances of the robot were validated with a simulation phantom and three pig noses. FE analysis indicated a 0.5mm magnitude displacement of the grippers sensing beam, which meets the ideal detecting range of the optoelectronic sensor. Studies on both the phantom and the pig nose demonstrated the successful operation of the robot during the collection task. The average forces were found to be 0.35N and 0.85N, respectively. It is concluded that the proposed robot is promising and could be further developed to be used in vivo.
The presence and coexistence of human operators and collaborative robots in shop-floor environments raises the need for assigning tasks to either operators or robots, or both. Depending on task characteristics, operator capabilities and the involved robot functionalities, it is of the utmost importance to design strategies allowing for the concurrent and/or sequential allocation of tasks related to object manipulation and assembly. In this paper, we extend the textsc{FlexHRC} framework presented in cite{darvish2018flexible} to allow a human operator to interact with multiple, heterogeneous robots at the same time in order to jointly carry out a given task. The extended textsc{FlexHRC} framework leverages a concurrent and sequential task representation framework to allocate tasks to either operators or robots as part of a dynamic collaboration process. In particular, we focus on a use case related to the inspection of product defects, which involves a human operator, a dual-arm Baxter manipulator from Rethink Robotics and a Kuka youBot mobile manipulator.
The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling public health emergencies. In such contexts, innovative technologies such as blockchain and Artificial Intelligence (AI) have emerged as promising solutions for fighting coronavirus epidemic. In particular, blockchain can combat pandemics by enabling early detection of outbreaks, ensuring the ordering of medical data, and ensuring reliable medical supply chain during the outbreak tracing. Moreover, AI provides intelligent solutions for identifying symptoms caused by coronavirus for treatments and supporting drug manufacturing. Therefore, we present an extensive survey on the use of blockchain and AI for combating COVID-19 epidemics. First, we introduce a new conceptual architecture which integrates blockchain and AI for fighting COVID-19. Then, we survey the latest research efforts on the use of blockchain and AI for fighting COVID-19 in various applications. The newly emerging projects and use cases enabled by these technologies to deal with coronavirus pandemic are also presented. A case study is also provided using federated AI for COVID-19 detection. Finally, we point out challenges and future directions that motivate more research efforts to deal with future coronavirus-like epidemics.
This paper investigates the online motion coordination problem for a group of mobile robots moving in a shared workspace, each of which is assigned a linear temporal logic specification. Based on the realistic assumptions that each robot is subject to both state and input constraints and can have only local view and local information, a fully distributed multi-robot motion coordination strategy is proposed. For each robot, the motion coordination strategy consists of three layers. An offline layer pre-computes the braking area for each region in the workspace, the controlled transition system, and a so-called potential function. An initialization layer outputs an initially safely satisfying trajectory. An online coordination layer resolves conflicts when one occurs. The online coordination layer is further decomposed into three steps. Firstly, a conflict detection algorithm is implemented, which detects conflicts with neighboring robots. Whenever conflicts are detected, a rule is designed to assign dynamically a planning order to each pair of neighboring robots. Finally, a sampling-based algorithm is designed to generate local collision-free trajectories for the robot which at the same time guarantees the feasibility of the specification. Safety is proven to be guaranteed for all robots at any time. The effectiveness and the computational tractability of the resulting solution is verified numerically by two case studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا