Do you want to publish a course? Click here

Graphene plasmon-phonon coupled modes at the exceptional point

308   0   0.0 ( 0 )
 Added by Sang Hyun Park
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Properties of graphene plasmons are greatly affected by their coupling to phonons. While such coupling has been routinely observed in both near-field and far-field graphene spectroscopy, the interplay between coupling strength and mode losses, and its exceptional point physics has not been discussed. By applying a non-Hermitian framework, we identify the transition point between strong and weak coupling as the exceptional point. Enhanced sensitivity to perturbations near the exceptional point is observed by varying the coupling strength and through gate modulation of the graphene Fermi level. Finally, we also show that the transition from strong to weak coupling is observable by changing the incident angle of radiation.



rate research

Read More

147 - H.M. Dong , S.H. Zhang , W. Xu 2011
Plasmon and coupled plasmon-phonon modes in graphene are investigated the-oretically within the diagrammatic self-consistent field theory. It shows that two plasmon modes and four coupled plasmon-phonon modes can be excited via intra-and inter-band transition channels. It is found that with increasing q and carrier density, the plasmon modes couple strongly with the optic-phonon modes in graphene. The coupled plasmon-phonon modes exhibit some interesting features which can be utilized to realize the plasmonic devices. Our results suggest that the carrier-phonon interaction should be considered to understand and explain the properties of elementary electronic excitations in graphene.
134 - R. J. Koch , Th. Seyller , 2010
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavelength limit ($q_parallel rightarrow 0$). Energy dependent energy-loss spectra give for the first time clear evidence of two coupled phonon-plasmon modes $omega_pm$ separated by a gap between $omega_{SO}$ ($q_parallel rightarrow 0$) and $omega_{TO}$ ($q_parallel >> 0$), the transverse optical phonon mode, with a Fano-type shape, in particular for higher primary electron energies ($E_0 ge 20eV$). A simplified model based on dielectric theory is able to simulate our energy - loss spectra as well as the dispersion of the two coupled phonon-plasmon modes $omega_pm$. In contrast, Liu and Willis [1] postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.
We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use the random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the plasmon frequencies and damping rates depend considerably on interlayer correlation parameters, electron densities and dielectric constants of the contacting media.
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G-band features originating from a double-resonant Raman process with q ot= 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q ot= 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q ot= 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.
Coupled quantum Hall edge channels show intriguing non-trivial modes, for example, charge and neutral modes at Landau level filling factors 2 and 2/3. We propose an appropriate and effective model with Coulomb interaction and disorder-induced tunneling characterized by coupling capacitances and tunneling conductances, respectively. This model explains how the transport eigenmodes, within the interaction- and disorder-dominated regimes, change with the coupling capacitance, tunneling conductance, and measurement frequency. We propose frequency- and time-domain transport experiments, from which eigenmodes can be determined using this model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا