Do you want to publish a course? Click here

Plasmon and coupled plasmon-phonon modes in graphene in the presence of inter-band excitation channels

157   0   0.0 ( 0 )
 Added by Hai Ming Dong
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasmon and coupled plasmon-phonon modes in graphene are investigated the-oretically within the diagrammatic self-consistent field theory. It shows that two plasmon modes and four coupled plasmon-phonon modes can be excited via intra-and inter-band transition channels. It is found that with increasing q and carrier density, the plasmon modes couple strongly with the optic-phonon modes in graphene. The coupled plasmon-phonon modes exhibit some interesting features which can be utilized to realize the plasmonic devices. Our results suggest that the carrier-phonon interaction should be considered to understand and explain the properties of elementary electronic excitations in graphene.



rate research

Read More

Properties of graphene plasmons are greatly affected by their coupling to phonons. While such coupling has been routinely observed in both near-field and far-field graphene spectroscopy, the interplay between coupling strength and mode losses, and its exceptional point physics has not been discussed. By applying a non-Hermitian framework, we identify the transition point between strong and weak coupling as the exceptional point. Enhanced sensitivity to perturbations near the exceptional point is observed by varying the coupling strength and through gate modulation of the graphene Fermi level. Finally, we also show that the transition from strong to weak coupling is observable by changing the incident angle of radiation.
Coupled quantum Hall edge channels show intriguing non-trivial modes, for example, charge and neutral modes at Landau level filling factors 2 and 2/3. We propose an appropriate and effective model with Coulomb interaction and disorder-induced tunneling characterized by coupling capacitances and tunneling conductances, respectively. This model explains how the transport eigenmodes, within the interaction- and disorder-dominated regimes, change with the coupling capacitance, tunneling conductance, and measurement frequency. We propose frequency- and time-domain transport experiments, from which eigenmodes can be determined using this model.
144 - R. J. Koch , Th. Seyller , 2010
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavelength limit ($q_parallel rightarrow 0$). Energy dependent energy-loss spectra give for the first time clear evidence of two coupled phonon-plasmon modes $omega_pm$ separated by a gap between $omega_{SO}$ ($q_parallel rightarrow 0$) and $omega_{TO}$ ($q_parallel >> 0$), the transverse optical phonon mode, with a Fano-type shape, in particular for higher primary electron energies ($E_0 ge 20eV$). A simplified model based on dielectric theory is able to simulate our energy - loss spectra as well as the dispersion of the two coupled phonon-plasmon modes $omega_pm$. In contrast, Liu and Willis [1] postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.
We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use the random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the plasmon frequencies and damping rates depend considerably on interlayer correlation parameters, electron densities and dielectric constants of the contacting media.
Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا