No Arabic abstract
This work tackles the face recognition task on images captured using thermal camera sensors which can operate in the non-light environment. While it can greatly increase the scope and benefits of the current security surveillance systems, performing such a task using thermal images is a challenging problem compared to face recognition task in the Visible Light Domain (VLD). This is partly due to the much smaller amount number of thermal imagery data collected compared to the VLD data. Unfortunately, direct application of the existing very strong face recognition models trained using VLD data into the thermal imagery data will not produce a satisfactory performance. This is due to the existence of the domain gap between the thermal and VLD images. To this end, we propose a Thermal-to-Visible Generative Adversarial Network (TV-GAN) that is able to transform thermal face images into their corresponding VLD images whilst maintaining identity information which is sufficient enough for the existing VLD face recognition models to perform recognition. Some examples are presented in Figure 1. Unlike the previous methods, our proposed TV-GAN uses an explicit closed-set face recognition loss to regularize the discriminator network training. This information will then be conveyed into the generator network in the forms of gradient loss. In the experiment, we show that by using this additional explicit regularization for the discriminator network, the TV-GAN is able to preserve more identity information when translating a thermal image of a person which is not seen before by the TV-GAN.
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recognition. Most of the general face recognition algorithms usually assume a sufficient resolution for the face images. However, in practice many applications often do not have sufficient image resolutions. The modern face hallucination models demonstrate reasonable performance to reconstruct high-resolution images from its corresponding low resolution images. However, they do not consider identity level information during hallucination which directly affects results of the recognition of low resolution faces. To address this issue, we propose a Face Hallucination Generative Adversarial Network (FH-GAN) which improves the quality of low resolution face images and accurately recognize those low quality images. Concretely, we make the following contributions: 1) we propose FH-GAN network, an end-to-end system, that improves both face hallucination and face recognition simultaneously. The novelty of this proposed network depends on incorporating identity information in a GAN-based face hallucination algorithm via combining a face recognition network for identity preserving. 2) We also propose a new face hallucination network, namely Dense Sparse Network (DSNet), which improves upon the state-of-art in face hallucination. 3) We demonstrate benefits of training the face recognition and GAN-based DSNet jointly by reporting good result on face hallucination and recognition.
Face aging is to render a given face to predict its future appearance, which plays an important role in the information forensics and security field as the appearance of the face typically varies with age. Although impressive results have been achieved with conditional generative adversarial networks (cGANs), the existing cGANs-based methods typically use a single network to learn various aging effects between any two different age groups. However, they cannot simultaneously meet three essential requirements of face aging -- including image quality, aging accuracy, and identity preservation -- and usually generate aged faces with strong ghost artifacts when the age gap becomes large. Inspired by the fact that faces gradually age over time, this paper proposes a novel progressive face aging framework based on generative adversarial network (PFA-GAN) to mitigate these issues. Unlike the existing cGANs-based methods, the proposed framework contains several sub-networks to mimic the face aging process from young to old, each of which only learns some specific aging effects between two adjacent age groups. The proposed framework can be trained in an end-to-end manner to eliminate accumulative artifacts and blurriness. Moreover, this paper introduces an age estimation loss to take into account the age distribution for an improved aging accuracy, and proposes to use the Pearson correlation coefficient as an evaluation metric measuring the aging smoothness for face aging methods. Extensively experimental results demonstrate superior performance over existing (c)GANs-based methods, including the state-of-the-art one, on two benchmarked datasets. The source code is available at~url{https://github.com/Hzzone/PFA-GAN}.
Generative adversarial networks (GANs) have been a popular deep generative model for real-world applications. Despite many recent efforts on GANs that have been contributed, mode collapse and instability of GANs are still open problems caused by their adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to the generator(s) and discriminators into a unified evolutionary adversarial framework to conduct effective adversarial multi-objective optimization. Thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes and improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generator} and E-Discriminators), evolved by its own evolutionary algorithm. Additionally, we further propose a Soft Mechanism to balance the trade-off between E-Generators and E-Discriminators to conduct steady training for CDE-GAN. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets demonstrate that the proposed CDE-GAN achieves a competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage: https://shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.
In recent years, visible-spectrum face verification systems have been shown to match expert forensic examiner recognition performance. However, such systems are ineffective in low-light and nighttime conditions. Thermal face imagery, which captures body heat emissions, effectively augments the visible spectrum, capturing discriminative facial features in scenes with limited illumination. Due to the increased cost and difficulty of obtaining diverse, paired thermal and visible spectrum datasets, algorithms and large-scale benchmarks for low-light recognition are limited. This paper presents an algorithm that achieves state-of-the-art performance on both the ARL-VTF and TUFTS multi-spectral face datasets. Importantly, we study the impact of face alignment, pixel-level correspondence, and identity classification with label smoothing for multi-spectral face synthesis and verification. We show that our proposed method is widely applicable, robust, and highly effective. In addition, we show that the proposed method significantly outperforms face frontalization methods on profile-to-frontal verification. Finally, we present MILAB-VTF(B), a challenging multi-spectral face dataset that is composed of paired thermal and visible videos. To the best of our knowledge, with face data from 400 subjects, this dataset represents the most extensive collection of publicly available indoor and long-range outdoor thermal-visible face imagery. Lastly, we show that our end-to-end thermal-to-visible face verification system provides strong performance on the MILAB-VTF(B) dataset.
Nowadays, target recognition technique plays an important role in many fields. However, the current target image information based methods suffer from the influence of image quality and the time cost of image reconstruction. In this paper, we propose a novel imaging-free target recognition method combining ghost imaging (GI) and generative adversarial networks (GAN). Based on the mechanism of GI, a set of random speckles sequence is employed to illuminate target, and a bucket detector without resolution is utilized to receive echo signal. The bucket signal sequence formed after continuous detections is constructed into a bucket signal array, which is regarded as the sample of GAN. Then, conditional GAN is used to map bucket signal array and target category. In practical application, the speckles sequence in training step is employed to illuminate target, and the bucket signal array is input GAN for recognition. The proposed method can improve the problems caused by conventional recognition methods that based on target image information, and provide a certain turbulence-free ability. Extensive experiments show that the proposed method achieves promising performance.