Do you want to publish a course? Click here

Towards Better Object Detection in Scale Variation with Adaptive Feature Selection

62   0   0.0 ( 0 )
 Added by Zehui Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

It is a common practice to exploit pyramidal feature representation to tackle the problem of scale variation in object instances. However, most of them still predict the objects in a certain range of scales based solely or mainly on a single-level representation, yielding inferior detection performance. To this end, we propose a novel adaptive feature selection module (AFSM), to automatically learn the way to fuse multi-level representations in the channel dimension, in a data-driven manner. It significantly improves the performance of the detectors that have a feature pyramid structure, while introducing nearly free inference overhead. Moreover, a class-aware sampling mechanism (CASM) is proposed to tackle the class imbalance problem, by re-weighting the sampling ratio to each of the training images, based on the statistical characteristics of each class. This is crucial to improve the performance of the minor classes. Experimental results demonstrate the effectiveness of the proposed method, with 83.04% mAP at 15.96 FPS on the VOC dataset, and 39.48% AP on the VisDrone-DET validation subset, respectively, outperforming other state-of-the-art detectors considerably. The code is available at https://github.com/ZeHuiGong/AFSM.git.



rate research

Read More

74 - Li Yang , Yan Xu , Shaoru Wang 2021
Recent one-stage object detectors follow a per-pixel prediction approach that predicts both the object category scores and boundary positions from every single grid location. However, the most suitable positions for inferring different targets, i.e., the object category and boundaries, are generally different. Predicting all these targets from the same grid location thus may lead to sub-optimal results. In this paper, we analyze the suitable inference positions for object category and boundaries, and propose a prediction-target-decoupled detector named PDNet to establish a more flexible detection paradigm. Our PDNet with the prediction decoupling mechanism encodes different targets separately in different locations. A learnable prediction collection module is devised with two sets of dynamic points, i.e., dynamic boundary points and semantic points, to collect and aggregate the predictions from the favorable regions for localization and classification. We adopt a two-step strategy to learn these dynamic point positions, where the prior positions are estimated for different targets first, and the network further predicts residual offsets to the positions with better perceptions of the object properties. Extensive experiments on the MS COCO benchmark demonstrate the effectiveness and efficiency of our method. With a single ResNeXt-64x4d-101 as the backbone, our detector achieves 48.7 AP with single-scale testing, which outperforms the state-of-the-art methods by an appreciable margin under the same experimental settings. Moreover, our detector is highly efficient as a one-stage framework. Our code will be public.
We present a flexible and high-performance framework, named Pyramid R-CNN, for two-stage 3D object detection from point clouds. Current approaches generally rely on the points or voxels of interest for RoI feature extraction on the second stage, but cannot effectively handle the sparsity and non-uniform distribution of those points, and this may result in failures in detecting objects that are far away. To resolve the problems, we propose a novel second-stage module, named pyramid RoI head, to adaptively learn the features from the sparse points of interest. The pyramid RoI head consists of three key components. Firstly, we propose the RoI-grid Pyramid, which mitigates the sparsity problem by extensively collecting points of interest for each RoI in a pyramid manner. Secondly, we propose RoI-grid Attention, a new operation that can encode richer information from sparse points by incorporating conventional attention-based and graph-based point operators into a unified formulation. Thirdly, we propose the Density-Aware Radius Prediction (DARP) module, which can adapt to different point density levels by dynamically adjusting the focusing range of RoIs. Combining the three components, our pyramid RoI head is robust to the sparse and imbalanced circumstances, and can be applied upon various 3D backbones to consistently boost the detection performance. Extensive experiments show that Pyramid R-CNN outperforms the state-of-the-art 3D detection models by a large margin on both the KITTI dataset and the Waymo Open dataset.
Aiming at facilitating a real-world, ever-evolving and scalable autonomous driving system, we present a large-scale benchmark for standardizing the evaluation of different self-supervised and semi-supervised approaches by learning from raw data, which is the first and largest benchmark to date. Existing autonomous driving systems heavily rely on `perfect visual perception models (e.g., detection) trained using extensive annotated data to ensure the safety. However, it is unrealistic to elaborately label instances of all scenarios and circumstances (e.g., night, extreme weather, cities) when deploying a robust autonomous driving system. Motivated by recent powerful advances of self-supervised and semi-supervised learning, a promising direction is to learn a robust detection model by collaboratively exploiting large-scale unlabeled data and few labeled data. Existing dataset (e.g., KITTI, Waymo) either provides only a small amount of data or covers limited domains with full annotation, hindering the exploration of large-scale pre-trained models. Here, we release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories. To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes. We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models. The data and more up-to-date information have been released at https://soda-2d.github.io.
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation. It is essential to focus on the image regions of small objects. In this paper, we propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection. Based on policy gradient, we construct a reinforcement learning framework for focus region generation, with the reward formulated by object distributions. The scales and aspect ratios of the generated regions are adaptive to the scales and distribution of objects inside. We apply variable magnification according to the scale of the region for adaptive multi-scale detection. We further propose collaborative training to complementarily promote the performance of AdaZoom and the detection network. To validate the effectiveness, we conduct extensive experiments on VisDrone2019, UAVDT, and DOTA datasets. The experiments show AdaZoom brings a consistent and significant improvement over different detection networks, achieving state-of-the-art performance on these datasets, especially outperforming the existing methods by AP of 4.64% on Vis-Drone2019.
83 - Liao Zhang , Yan Yan , Lin Cheng 2020
Weakly-supervised object detection has recently attracted increasing attention since it only requires image-levelannotations. However, the performance obtained by existingmethods is still far from being satisfactory compared with fully-supervised object detection methods. To achieve a good trade-off between annotation cost and object detection performance,we propose a simple yet effective method which incorporatesCNN visualization with click supervision to generate the pseudoground-truths (i.e., bounding boxes). These pseudo ground-truthscan be used to train a fully-supervised detector. To estimatethe object scale, we firstly adopt a proposal selection algorithmto preserve high-quality proposals, and then generate ClassActivation Maps (CAMs) for these preserved proposals by theproposed CNN visualization algorithm called Spatial AttentionCAM. Finally, we fuse these CAMs together to generate pseudoground-truths and train a fully-supervised object detector withthese ground-truths. Experimental results on the PASCAL VOC2007 and VOC 2012 datasets show that the proposed methodcan obtain much higher accuracy for estimating the object scale,compared with the state-of-the-art image-level based methodsand the center-click based method
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا