We obtain an effective analytic formula, with explicit constants, for the number of distinct irreducible factors of a polynomial $f in mathbb{Z}[x]$. We use an explicit version of Mertens theorem for number fields to estimate a related sum over rational primes. For a given $f in mathbb{Z}[x]$, our result yields a finite list of primes that certifies the number of distinct irreducible factors of $f$.
We fix data $(K/F, E)$ consisting of a Galois extension $K/F$ of characteristic $p$ global fields with arbitrary abelian Galois group $G$ and a Drinfeld module $E$ defined over a certain Dedekind subring of $F$. For this data, we define a $G$-equivariant $L$-function $Theta_{K/F}^E$ and prove an equivariant Tamagawa number formula for certain Euler-complet
Rank-2 Drinfeld modules are a function-field analogue of elliptic curves, and the purpose of this paper is to investigate similarities and differences between rank-2 Drinfeld modules and elliptic curves in terms of supersingularity. Specifically, we provide an explicit formula of a supersingular polynomial for rank-2 Drinfeld modules and prove several basic properties. As an application, we give a numerical example of an asymptotically optimal tower of Drinfeld modular curves.
This paper deals with properties of the algebraic variety defined as the set of zeros of a typical sequence of polynomials. We consider various types of nice varieties: set-theoretic and ideal-theoretic complete intersections, absolutely irreducible ones, and nonsingular ones. For these types, we present a nonzero obstruction polynomial of explicitly bounded degree in the coefficients of the sequence that vanishes if its variety is not of the type. Over finite fields, this yields bounds on the number of such sequences. We also show that most sequences (of at least two polynomials) define a degenerate variety, namely an absolutely irreducible nonsingular hypersurface in some linear projective subspace.
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conjectured that the difference of the summatory functions should attain a constant sign for all sufficiently large $x$. In this paper, we provide strong evidence for Greg Martins conjecture. Moreover, we derive a general theorem for arithmetic functions from the Selberg class.
In this paper we use a theorem first proved by S.W.Golomb and a famous inequality by J.B. Rosser and L.Schoenfeld in order to prove that there exists an exact formula for $pi(n)$ which holds infinitely often.
Stephan Ramon Garcia
,Ethan Simpson Lee
,Josh Suh
.
(2020)
.
"An effective analytic formula for the number of distinct irreducible factors of a polynomial"
.
Stephan Garcia R
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا