Do you want to publish a course? Click here

DDRel: A New Dataset for Interpersonal Relation Classification in Dyadic Dialogues

99   0   0.0 ( 0 )
 Added by Qi Jia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Interpersonal language style shifting in dialogues is an interesting and almost instinctive ability of human. Understanding interpersonal relationship from language content is also a crucial step toward further understanding dialogues. Previous work mainly focuses on relation extraction between named entities in texts. In this paper, we propose the task of relation classification of interlocutors based on their dialogues. We crawled movie scripts from IMSDb, and annotated the relation labels for each session according to 13 pre-defined relationships. The annotated dataset DDRel consists of 6300 dyadic dialogue sessions between 694 pair of speakers with 53,126 utterances in total. We also construct session-level and pair-level relation classification tasks with widely-accepted baselines. The experimental results show that this task is challenging for existing models and the dataset will be useful for future research.



rate research

Read More

353 - Zhen Wang , Xu Shan , Jie Yang 2021
Current news datasets merely focus on text features on the news and rarely leverage the feature of images, excluding numerous essential features for news classification. In this paper, we propose a new dataset, N15News, which is generated from New York Times with 15 categories and contains both text and image information in each news. We design a novel multitask multimodal network with different fusion methods, and experiments show multimodal news classification performs better than text-only news classification. Depending on the length of the text, the classification accuracy can be increased by up to 5.8%. Our research reveals the relationship between the performance of a multimodal classifier and its sub-classifiers, and also the possible improvements when applying multimodal in news classification. N15News is shown to have great potential to prompt the multimodal news studies.
The goal of dialogue relation extraction (DRE) is to identify the relation between two entities in a given dialogue. During conversations, speakers may expose their relations to certain entities by some clues, such evidences called triggers. However, none of the existing work on DRE tried to detect triggers and leverage the information for enhancing the performance. This paper proposes TREND, a multi-tasking BERT-based model which learns to identify triggers for improving relation extraction. The experimental results show that the proposed method achieves the state-of-the-art on the benchmark datasets.
Inferring social relations from dialogues is vital for building emotionally intelligent robots to interpret human language better and act accordingly. We model the social network as an And-or Graph, named SocAoG, for the consistency of relations among a group and leveraging attributes as inference cues. Moreover, we formulate a sequential structure prediction task, and propose an $alpha$-$beta$-$gamma$ strategy to incrementally parse SocAoG for the dynamic inference upon any incoming utterance: (i) an $alpha$ process predicting attributes and relations conditioned on the semantics of dialogues, (ii) a $beta$ process updating the social relations based on related attributes, and (iii) a $gamma$ process updating individuals attributes based on interpersonal social relations. Empirical results on DialogRE and MovieGraph show that our model infers social relations more accurately than the state-of-the-art methods. Moreover, the ablation study shows the three processes complement each other, and the case study demonstrates the dynamic relational inference.
Medical dialogue systems (MDSs) aim to assist doctors and patients with a range of professional medical services, i.e., diagnosis, consultation, and treatment. However, one-stop MDS is still unexplored because: (1) no dataset has so large-scale dialogues contains both multiple medical services and fine-grained medical labels (i.e., intents, slots, values); (2) no model has addressed a MDS based on multiple-service conversations in a unified framework. In this work, we first build a Multiple-domain Multiple-service medical dialogue (M^2-MedDialog)dataset, which contains 1,557 conversations between doctors and patients, covering 276 types of diseases, 2,468 medical entities, and 3 specialties of medical services. To the best of our knowledge, it is the only medical dialogue dataset that includes both multiple medical services and fine-grained medical labels. Then, we formulate a one-stop MDS as a sequence-to-sequence generation problem. We unify a MDS with causal language modeling and conditional causal language modeling, respectively. Specifically, we employ several pretrained models (i.e., BERT-WWM, BERT-MED, GPT2, and MT5) and their variants to get benchmarks on M^2-MedDialog dataset. We also propose pseudo labeling and natural perturbation methods to expand M2-MedDialog dataset and enhance the state-of-the-art pretrained models. We demonstrate the results achieved by the benchmarks so far through extensive experiments on M2-MedDialog. We release the dataset, the code, as well as the evaluation scripts to facilitate future research in this important research direction.
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow extraction of more diverse facts. Very recently, a dataset for multilingual DS-RE has been released. However, our analysis reveals that the proposed dataset exhibits unrealistic characteristics such as 1) lack of sentences that do not express any relation, and 2) all sentences for a given entity pair expressing exactly one relation. We show that these characteristics lead to a gross overestimation of the model performance. In response, we propose a new dataset, DiS-ReX, which alleviates these issues. Our dataset has more than 1.5 million sentences, spanning across 4 languages with 36 relation classes + 1 no relation (NA) class. We also modify the widely used bag attention models by encoding sentences using mBERT and provide the first benchmark results on multilingual DS-RE. Unlike the competing dataset, we show that our dataset is challenging and leaves enough room for future research to take place in this field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا