No Arabic abstract
Inferring social relations from dialogues is vital for building emotionally intelligent robots to interpret human language better and act accordingly. We model the social network as an And-or Graph, named SocAoG, for the consistency of relations among a group and leveraging attributes as inference cues. Moreover, we formulate a sequential structure prediction task, and propose an $alpha$-$beta$-$gamma$ strategy to incrementally parse SocAoG for the dynamic inference upon any incoming utterance: (i) an $alpha$ process predicting attributes and relations conditioned on the semantics of dialogues, (ii) a $beta$ process updating the social relations based on related attributes, and (iii) a $gamma$ process updating individuals attributes based on interpersonal social relations. Empirical results on DialogRE and MovieGraph show that our model infers social relations more accurately than the state-of-the-art methods. Moreover, the ablation study shows the three processes complement each other, and the case study demonstrates the dynamic relational inference.
Scene graph representations, which form a graph of visual object nodes together with their attributes and relations, have proved useful across a variety of vision and language applications. Recent work in the area has used Natural Language Processing dependency tree methods to automatically build scene graphs. In this work, we present an Attention Graph mechanism that can be trained end-to-end, and produces a scene graph structure that can be lifted directly from the top layer of a standard Transformer model. The scene graphs generated by our model achieve an F-score similarity of 52.21% to ground-truth graphs on the evaluation set using the SPICE metric, surpassing the best previous approaches by 2.5%.
Natural language to SQL (NL2SQL) aims to parse a natural language with a given database into a SQL query, which widely appears in practical Internet applications. Jointly encode database schema and question utterance is a difficult but important task in NL2SQL. One solution is to treat the input as a heterogeneous graph. However, it failed to learn good word representation in question utterance. Learning better word representation is important for constructing a well-designed NL2SQL system. To solve the challenging task, we present a Relation aware Semi-autogressive Semantic Parsing (MODN) ~framework, which is more adaptable for NL2SQL. It first learns relation embedding over the schema entities and question words with predefined schema relations with ELECTRA and relation aware transformer layer as backbone. Then we decode the query SQL with a semi-autoregressive parser and predefined SQL syntax. From empirical results and case study, our model shows its effectiveness in learning better word representation in NL2SQL.
There has been a recent surge of research interest in attacking the problem of social relation inference based on images. Existing works classify social relations mainly by creating complicated graphs of human interactions, or learning the foreground and/or background information of persons and objects, but ignore holistic scene context. The holistic scene refers to the functionality of a place in images, such as dinning room, playground and office. In this paper, by mimicking human understanding on images, we propose an approach of textbf{PR}actical textbf{I}nference in textbf{S}ocial rtextbf{E}lation (PRISE), which concisely learns interactive features of persons and discriminative features of holistic scenes. Technically, we develop a simple and fast relational graph convolutional network to capture interactive features of all persons in one image. To learn the holistic scene feature, we elaborately design a contrastive learning task based on image scene classification. To further boost the performance in social relation inference, we collect and distribute a new large-scale dataset, which consists of about 240 thousand unlabeled images. The extensive experimental results show that our novel learning framework significantly beats the state-of-the-art methods, e.g., PRISE achieves 6.8$%$ improvement for domain classification in PIPA dataset.
Knowledgebase question answering systems are heavily dependent on relation extraction and linking modules. However, the task of extracting and linking relations from text to knowledgebases faces two primary challenges; the ambiguity of natural language and lack of training data. To overcome these challenges, we present SLING, a relation linking framework which leverages semantic parsing using Abstract Meaning Representation (AMR) and distant supervision. SLING integrates multiple relation linking approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledgebase. The experiments on relation linking using three KBQA datasets; QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
To successfully negotiate a deal, it is not enough to communicate fluently: pragmatic planning of persuasive negotiation strategies is essential. While modern dialogue agents excel at generating fluent sentences, they still lack pragmatic grounding and cannot reason strategically. We present DialoGraph, a negotiation system that incorporates pragmatic strategies in a negotiation dialogue using graph neural networks. DialoGraph explicitly incorporates dependencies between sequences of strategies to enable improved and interpretable prediction of next optimal strategies, given the dialogue context. Our graph-based method outperforms prior state-of-the-art negotiation models both in the accuracy of strategy/dialogue act prediction and in the quality of downstream dialogue response generation. We qualitatively show further benefits of learned strategy-graphs in providing explicit associations between effective negotiation strategies over the course of the dialogue, leading to interpretable and strategic dialogues.