Do you want to publish a course? Click here

Methods of ranking for aggregated fuzzy numbers from interval-valued data

54   0   0.0 ( 0 )
 Added by Uwe Aickelin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper primarily presents two methods of ranking aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The two proposed ranking methods within this study contain the combination and application of previously proposed similarity measures, along with attributes novel to that of aggregated fuzzy numbers from interval-valued data. The shortcomings of previous measures, along with the improvements of the proposed methods, are illustrated using both a synthetic and real-world application. The real-world application regards the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, modified to include both the previous and newly proposed methods.



rate research

Read More

This paper presents a method to compute the degree of similarity between two aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The similarity measure proposed within this study contains several features and attributes, of which are novel to aggregated fuzzy numbers. The attributes completely redefined or modified within this study include area, perimeter, centroids, quartiles and the agreement ratio. The recommended weighting for each feature has been learned using Principal Component Analysis (PCA). Furthermore, an illustrative example is provided to detail the application and potential future use of the similarity measure.
In this paper, the interval-valued intuitionistic fuzzy matrix (IVIFM) is introduced. The interval-valued intuitionistic fuzzy determinant is also defined. Some fundamental operations are also presented. The need of IVIFM is explain by an example.
166 - Debaroti Das , P.K.De 2014
Ranking of intuitionsitic fuzzy number plays a vital role in decision making and other intuitionistic fuzzy applications. In this paper, we propose a new ranking method of intuitionistic fuzzy number based on distance measure. We first define a distance measure for interval numbers based on Lp metric and further generalize the idea for intuitionistic fuzzy number by forming interval with their respective value and ambiguity indices. Finally, some comparative results are given in tabular form.
Aggregation of large databases in a specific format is a frequently used process to make the data easily manageable. Interval-valued data is one of the data types that is generated by such an aggregation process. Using traditional methods to analyze interval-valued data results in loss of information, and thus, several interval-valued data models have been proposed to gather reliable information from such data types. On the other hand, recent technological developments have led to high dimensional and complex data in many application areas, which may not be analyzed by traditional techniques. Functional data analysis is one of the most commonly used techniques to analyze such complex datasets. While the functional extensions of much traditional statistical techniques are available, the functional form of the interval-valued data has not been studied well. This paper introduces the functional forms of some well-known regression models that take interval-valued data. The proposed methods are based on the function-on-function regression model, where both the response and predictor/s are functional. Through several Monte Carlo simulations and empirical data analysis, the finite sample performance of the proposed methods is evaluated and compared with the state-of-the-art.
We present a novel approach for the derivation of PDE modeling curvature-driven flows for matrix-valued data. This approach is based on the Riemannian geometry of the manifold of Symmetric Positive Definite Matrices Pos(n).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا