In this paper, the interval-valued intuitionistic fuzzy matrix (IVIFM) is introduced. The interval-valued intuitionistic fuzzy determinant is also defined. Some fundamental operations are also presented. The need of IVIFM is explain by an example.
This paper presents a method to compute the degree of similarity between two aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The similarity measure proposed within this study contains several features and attributes, of which are novel to aggregated fuzzy numbers. The attributes completely redefined or modified within this study include area, perimeter, centroids, quartiles and the agreement ratio. The recommended weighting for each feature has been learned using Principal Component Analysis (PCA). Furthermore, an illustrative example is provided to detail the application and potential future use of the similarity measure.
This paper primarily presents two methods of ranking aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The two proposed ranking methods within this study contain the combination and application of previously proposed similarity measures, along with attributes novel to that of aggregated fuzzy numbers from interval-valued data. The shortcomings of previous measures, along with the improvements of the proposed methods, are illustrated using both a synthetic and real-world application. The real-world application regards the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, modified to include both the previous and newly proposed methods.
In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic components is < 1, or > 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, besides independent components, also partially independent and partially dependent components, while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we can construct different approaches to various neutrosophic concepts. Also, Regret Theory, Grey System Theory, and Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. We extended for the first time the Three-Ways Decision to n-Ways Decision, and the Spherical Fuzzy Set to n-HyperSpherical Fuzzy Set and to n-HyperSpherical Neutrosophic Set.
Ranking of intuitionsitic fuzzy number plays a vital role in decision making and other intuitionistic fuzzy applications. In this paper, we propose a new ranking method of intuitionistic fuzzy number based on distance measure. We first define a distance measure for interval numbers based on Lp metric and further generalize the idea for intuitionistic fuzzy number by forming interval with their respective value and ambiguity indices. Finally, some comparative results are given in tabular form.
In this paper we obtain several characterizations of the adjacency matrix of a probe interval graph. In course of this study we describe an easy method of obtaining interval representation of an interval bipartite graph from its adjacency matrix. Finally, we note that if we add a loop at every probe vertex of a probe interval graph, then the Ferrers dimension of the corresponding symmetric bipartite graph is at most 3.