Do you want to publish a course? Click here

On the thermodynamic consistency of Quasi-Linear Viscoelastic models for soft solids

102   0   0.0 ( 0 )
 Added by Harold Berjamin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Originating in the field of biomechanics, Fungs model of quasi-linear viscoelasticity (QLV) is one of the most popular constitutive theories employed to compute the time-dependent relationship between stress and deformation in soft solids. It is one of the simplest models of nonlinear viscoelasticity, based on a time-domain integral formulation. In the present study, we consider the QLV model incorporating a single scalar relaxation function. We provide natural internal variables of state, as well as a consistent expression of the free energy to illustrate the thermodynamic consistency of this version of the QLV model. The thermodynamic formulation highlights striking similarities between QLV and the internal-variable models introduced by Holzapfel and Simo. Finally, the dissipative features of compressible QLV materials are illustrated in simple tension.



rate research

Read More

We use molecular dynamics simulations of a model three-dimensional particulate gel, to investigate the linear viscoelastic response. The numerical simulations are combined with a novel test protocol (the optimally- windowed chirp or OWCh), in which a continuous exponentially-varying frequency sweep windowed by a tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier domain. We show that i) OWCh leads to an accurate computation of the full frequency spectrum at a rate significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-noise ratio, and ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path towards novel multiscale insight into the rheological response for such complex materials.
The spreading of liquid drops on soft substrates is extremely slow, owing to strong viscoelastic dissipation inside the solid. A detailed understanding of the spreading dynamics has remained elusive, partly owing to the difficulty in quantifying the strong viscoelastic deformations below the contact line that determine the shape of moving wetting ridges. Here we present direct experimental visualisations of the dynamic wetting ridge, complemented with measurements of the liquid contact angle. It is observed that the wetting ridge exhibits a rotation that follows exactly the dynamic liquid contact angle -- as was previously hypothesized [Karpitschka emph{et al.} Nature Communications textbf{6}, 7891 (2015)]. This experimentally proves that, despite the contact line motion, the wetting ridge is still governed by Neumanns law. Furthermore, our experiments suggest that moving contact lines lead to a variable surface tension of the substrate. We therefore set up a new theory that incorporates the influence of surface strain, for the first time including the so-called Shuttleworth effect into the dynamical theory for soft wetting. It includes a detailed analysis of the boundary conditions at the contact line, complemented by a dissipation analysis, which shows, again, the validity of Neumanns balance.
130 - Srikanth Sastry 2020
Understanding the mechanical response and failure of solids is of obvious importance in their use as structural materials. The nature of plastic deformation leading to yielding of amorphous solids has been vigorously pursued in recent years. Investigations employing both unidirectional and cyclic deformation protocols reveal a strong dependence of yielding behaviour on the degree of annealing. Below a threshold degree of annealing, the nature of yielding changes qualitatively, to progressively more discontinuous yielding. Theoretical investigations of yielding in amorphous solids have almost exclusively focused on yielding under unidirectional deformation, but cyclic deformation reveals several interesting features that remain largely un-investigated. Focusing on athermal cyclic deformation, I investigate a family of models based on an energy landscape description. These models reproduce key interesting features observed in simulations, and provide an interpretation for the intriguing presence of a threshold energy.
Understanding surface mechanics of soft solids, such as soft polymeric gels, is crucial in many engineering processes, such as dynamic wetting and adhesive failure. In these situations, a combination of capillary and elastic forces drives the motion, which is balanced by dissipative mechanisms to determine the rate. While shear rheology (i.e. viscoelasticity) has long been assumed to dominate the dissipation, recent works have suggested that compressibility effects (i.e. poroelasticity) could play roles in swollen networks. We use fast interferometric imaging to quantify the relaxation of surface deformations due to a displaced contact line. By systematically measuring the profiles at different time and length scales, we experimentally observe a crossover from viscoelastic to poroelastic surface relaxations.
A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time reversal symmetry. In practice, active fluids may have not only liquid crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a drag-reduction effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا