No Arabic abstract
Understanding surface mechanics of soft solids, such as soft polymeric gels, is crucial in many engineering processes, such as dynamic wetting and adhesive failure. In these situations, a combination of capillary and elastic forces drives the motion, which is balanced by dissipative mechanisms to determine the rate. While shear rheology (i.e. viscoelasticity) has long been assumed to dominate the dissipation, recent works have suggested that compressibility effects (i.e. poroelasticity) could play roles in swollen networks. We use fast interferometric imaging to quantify the relaxation of surface deformations due to a displaced contact line. By systematically measuring the profiles at different time and length scales, we experimentally observe a crossover from viscoelastic to poroelastic surface relaxations.
We study theoretically the velocity cross-correlations of a viscous fluid confined in a slit between two viscoelastic media. We analyze the effect of these correlations on the motions of particles suspended in the fluid. The compliance of the confining boundaries gives rise to a long-ranged pair correlation, decaying only as $1/r$ with the interparticle distance $r$. We show how this long-ranged effect may be used to extract the viscoelastic properties of the confining media without embedding tracer particles in them. We discuss the remarkable robustness of such a potential technique with respect to details of the confinement, and its expected statistical advantages over standard two-point microrheology.
Frictional properties of contacts between a smooth viscoelastic rubber and rigid surfaces are investigated using a torsional contact configuration where a glass lens is continuously rotated on the rubber surface. From the inversion of the displacement field measured at the surface of the rubber, spatially resolved values of the steady state frictional shear stress are determined within the non homogeneous pressure and velocity fields of the contact. For contacts with a smooth lens, a velocity dependent but pressure independent local shear stress is retrieved from the inversion. On the other hand, the local shear stress is found to depend both on velocity and applied contact pressure when a randomly rough (sand blasted) glass lens is rubbed against the rubber surface. As a result of changes in the density of micro-asperity contacts, the amount of light transmitted by the transparent multi-contact interface is observed to vary locally as a function of both contact pressure and sliding velocity. Under the assumption that the intensity of light transmitted by the rough interface is proportional to the proportion of area into contact, it is found that the local frictional stress can be expressed experimentally as the product of a purely velocity dependent term, $k(v)$, by a term representing the pressure and velocity dependence of the actual contact area, $A/A_0$. A comparison between $k(v)$ and the frictional shear stress of smooth contacts suggests that nanometer scale dissipative processes occurring at the interface predominate over viscoelastic dissipation at micro-asperity scale.
Elasticity of soft materials can be greatly influenced by the presence of air bubbles. Such a capillary effect is expected for a wide range of materials, from polymer gels to concentrated emulsions and colloidal suspensions. Whereas experimental results and theory exist for describing the elasto-capillary behavior of bubbly materials (i.e. with moderate gas volume fractions), foamy systems still require a dedicated study in order to increase our understanding of elasticity in aerated materials over the full range of gas volume fractions. Here we elaborate well-controlled foams with concentrated emulsion and we measure their shear elastic modulus as a function of gas fraction, bubble size and elastic modulus of the emulsion. Such complex foams possess the elastic features of both the bubble assembly and the interstitial matrix. Moreover, their elastic modulus is shown to be governed by two parameters, namely the gas volume fraction and the elasto-capillary number, defined as the ratio of the emulsion modulus with the bubble capillary pressure. We connect our results for foams with existing data for bubbly systems and we provide a general view for the effect of gas bubbles in soft elastic media. Finally, we suggest that our results could be useful for estimating the shear modulus of aqueous foams and emulsions with multimodal size distributions.
Originating in the field of biomechanics, Fungs model of quasi-linear viscoelasticity (QLV) is one of the most popular constitutive theories employed to compute the time-dependent relationship between stress and deformation in soft solids. It is one of the simplest models of nonlinear viscoelasticity, based on a time-domain integral formulation. In the present study, we consider the QLV model incorporating a single scalar relaxation function. We provide natural internal variables of state, as well as a consistent expression of the free energy to illustrate the thermodynamic consistency of this version of the QLV model. The thermodynamic formulation highlights striking similarities between QLV and the internal-variable models introduced by Holzapfel and Simo. Finally, the dissipative features of compressible QLV materials are illustrated in simple tension.
Soft materials with a liquid component are an emerging paradigm in materials design. The incorporation of a liquid phase, such as water, liquid metals, or complex fluids, into solid materials imparts unique properties and characteristics that emerge as a result of the dramatically different properties of the liquid and solid. Especially in recent years, this has led to the development and study of a range of novel materials with new functional responses, with applications in topics including soft electronics, soft robotics, 3D printing, wet granular systems and even in cell biology. Here we provide a review of solid-liquid composites, broadly defined as a material system with at least one, phase-separated liquid component, and discuss their morphology and fabrication approaches, their emergent mechanical properties and functional response, and the broad range of their applications.