Do you want to publish a course? Click here

DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances

250   0   0.0 ( 0 )
 Added by Xiaodong Gu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in pre-trained language models have significantly improved neural response generation. However, existing methods usually view the dialogue context as a linear sequence of tokens and learn to generate the next word through token-level self-attention. Such token-level encoding hinders the exploration of discourse-level coherence among utterances. This paper presents DialogBERT, a novel conversational response generation model that enhances previous PLM-based dialogue models. DialogBERT employs a hierarchical Transformer architecture. To efficiently capture the discourse-level coherence among utterances, we propose two training objectives, including masked utterance regression and distributed utterance order ranking in analogy to the original BERT training. Experiments on three multi-turn conversation datasets show that our approach remarkably outperforms the baselines, such as BART and DialoGPT, in terms of quantitative evaluation. The human evaluation suggests that DialogBERT generates more coherent, informative, and human-like responses than the baselines with significant margins.



rate research

Read More

A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the users emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the users emotion, cognitive understanding of the users situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the users situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision yes/no/irrelevant of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.
Current state-of-the-art neural dialogue models learn from human conversations following the data-driven paradigm. As such, a reliable training corpus is the crux of building a robust and well-behaved dialogue model. However, due to the open-ended nature of human conversations, the quality of user-generated training data varies greatly, and effective training samples are typically insufficient while noisy samples frequently appear. This impedes the learning of those data-driven neural dialogue models. Therefore, effective dialogue learning requires not only more reliable learning samples, but also fewer noisy samples. In this paper, we propose a data manipulation framework to proactively reshape the data distribution towards reliable samples by augmenting and highlighting effective learning samples as well as reducing the effect of inefficient samples simultaneously. In particular, the data manipulation model selectively augments the training samples and assigns an importance weight to each instance to reform the training data. Note that, the proposed data manipulation framework is fully data-driven and learnable. It not only manipulates training samples to optimize the dialogue generation model, but also learns to increase its manipulation skills through gradient descent with validation samples. Extensive experiments show that our framework can improve the dialogue generation performance with respect to various automatic evaluation metrics and human judgments.
293 - Lei Shen , Yang Feng 2020
Emotion-controllable response generation is an attractive and valuable task that aims to make open-domain conversations more empathetic and engaging. Existing methods mainly enhance the emotion expression by adding regularization terms to standard cross-entropy loss and thus influence the training process. However, due to the lack of further consideration of content consistency, the common problem of response generation tasks, safe response, is intensified. Besides, query emotions that can help model the relationship between query and response are simply ignored in previous models, which would further hurt the coherence. To alleviate these problems, we propose a novel framework named Curriculum Dual Learning (CDL) which extends the emotion-controllable response generation to a dual task to generate emotional responses and emotional queries alternatively. CDL utilizes two rewards focusing on emotion and content to improve the duality. Additionally, it applies curriculum learning to gradually generate high-quality responses based on the difficulties of expressing various emotions. Experimental results show that CDL significantly outperforms the baselines in terms of coherence, diversity, and relation to emotion factors.
Enthymemes are defined as arguments where a premise or conclusion is left implicit. We tackle the task of generating the implicit premise in an enthymeme, which requires not only an understanding of the stated conclusion and premise but also additional inferences that could depend on commonsense knowledge. The largest available dataset for enthymemes (Habernal et al., 2018) consists of 1.7k samples, which is not large enough to train a neural text generation model. To address this issue, we take advantage of a similar task and dataset: Abductive reasoning in narrative text (Bhagavatula et al., 2020). However, we show that simply using a state-of-the-art seq2seq model fine-tuned on this data might not generate meaningful implicit premises associated with the given enthymemes. We demonstrate that encoding discourse-aware commonsense during fine-tuning improves the quality of the generated implicit premises and outperforms all other baselines both in automatic and human evaluations on three different datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا