Do you want to publish a course? Click here

Few-Shot Classification with Feature Map Reconstruction Networks

154   0   0.0 ( 0 )
 Added by Davis Wertheimer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we reformulate few-shot classification as a reconstruction problem in latent space. The ability of the network to reconstruct a query feature map from support features of a given class predicts membership of the query in that class. We introduce a novel mechanism for few-shot classification by regressing directly from support features to query features in closed form, without introducing any new modules or large-scale learnable parameters. The resulting Feature Map Reconstruction Networks are both more performant and computationally efficient than previous approaches. We demonstrate consistent and substantial accuracy gains on four fine-grained benchmarks with varying neural architectures. Our model is also competitive on the non-fine-grained mini-ImageNet and tiered-ImageNet benchmarks with minimal bells and whistles.

rate research

Read More

Learning-based methods for visual segmentation have made progress on particular types of segmentation tasks, but are limited by the necessary supervision, the narrow definitions of fixed tasks, and the lack of control during inference for correcting errors. To remedy the rigidity and annotation burden of standard approaches, we address the problem of few-shot segmentation: given few image and few pixel supervision, segment any images accordingly. We propose guided networks, which extract a latent task representation from any amount of supervision, and optimize our architecture end-to-end for fast, accurate few-shot segmentation. Our method can switch tasks without further optimization and quickly update when given more guidance. We report the first results for segmentation from one pixel per concept and show real-time interactive video segmentation. Our unified approach propagates pixel annotations across space for interactive segmentation, across time for video segmentation, and across scenes for semantic segmentation. Our guided segmentor is state-of-the-art in accuracy for the amount of annotation and time. See http://github.com/shelhamer/revolver for code, models, and more details.
136 - Kai Li , Yulun Zhang , Kunpeng Li 2020
The recent flourish of deep learning in various tasks is largely accredited to the rich and accessible labeled data. Nonetheless, massive supervision remains a luxury for many real applications, boosting great interest in label-scarce techniques such as few-shot learning (FSL), which aims to learn concept of new classes with a few labeled samples. A natural approach to FSL is data augmentation and many recent works have proved the feasibility by proposing various data synthesis models. However, these models fail to well secure the discriminability and diversity of the synthesized data and thus often produce undesirable results. In this paper, we propose Adversarial Feature Hallucination Networks (AFHN) which is based on conditional Wasserstein Generative Adversarial networks (cWGAN) and hallucinates diverse and discriminative features conditioned on the few labeled samples. Two novel regularizers, i.e., the classification regularizer and the anti-collapse regularizer, are incorporated into AFHN to encourage discriminability and diversity of the synthesized features, respectively. Ablation study verifies the effectiveness of the proposed cWGAN based feature hallucination framework and the proposed regularizers. Comparative results on three common benchmark datasets substantiate the superiority of AFHN to existing data augmentation based FSL approaches and other state-of-the-art ones.
142 - Zhiwu Lu , Jiechao Guan , Aoxue Li 2018
Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g.,~an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between the seen and unseen class domains. In this work, this is achieved by unseen class data synthesis and robust projection function learning. Specifically, a novel semantic data synthesis strategy is proposed, by which semantic class prototypes (e.g., attribute vectors) are used to simply perturb seen class data for generating unseen class ones. As in any data synthesis/hallucination approach, there are ambiguities and uncertainties on how well the synthesised data can capture the targeted unseen class data distribution. To cope with this, the second contribution of this work is a novel projection learning model termed competitive bidirectional projection learning (BPL) designed to best utilise the ambiguous synthesised data. Specifically, we assume that each synthesised data point can belong to any unseen class; and the most likely two class candidates are exploited to learn a robust projection function in a competitive fashion. As a third contribution, we show that the proposed ZSL model can be easily extended to few-shot learning (FSL) by again exploiting semantic (class prototype guided) feature synthesis and competitive BPL. Extensive experiments show that our model achieves the state-of-the-art results on both problems.
Few-shot learning aims to transfer information from one task to enable generalization on novel tasks given a few examples. This information is present both in the domain and the class labels. In this work we investigate the complementary roles of these two sources of information by combining instance-discriminative contrastive learning and supervised learning in a single framework called Supervised Momentum Contrastive learning (SUPMOCO). Our approach avoids a problem observed in supervised learning where information in images not relevant to the task is discarded, which hampers their generalization to novel tasks. We show that (self-supervised) contrastive learning and supervised learning are mutually beneficial, leading to a new state-of-the-art on the META-DATASET - a recently introduced benchmark for few-shot learning. Our method is based on a simple modification of MOCO and scales better than prior work on combining supervised and self-supervised learning. This allows us to easily combine data from multiple domains leading to further improvements.
This paper proposes Dynamic Memory Induction Networks (DMIN) for few-shot text classification. The model utilizes dynamic routing to provide more flexibility to memory-based few-shot learning in order to better adapt the support sets, which is a critical capacity of few-shot classification models. Based on that, we further develop induction models with query information, aiming to enhance the generalization ability of meta-learning. The proposed model achieves new state-of-the-art results on the miniRCV1 and ODIC dataset, improving the best performance (accuracy) by 2~4%. Detailed analysis is further performed to show the effectiveness of each component.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا