Do you want to publish a course? Click here

Gapless quantum spin liquid in the triangular system Sr$_{3}$CuSb$_{2}$O$_{9}$

95   0   0.0 ( 0 )
 Added by Susanta Kundu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report gapless quantum spin liquid behavior in the layered triangular Sr$_{3}$CuSb$_{2}$O$_{9}$ (SCSO) system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well-separated by Sb planes. Muon spin relaxation ($mu$SR) measurements show that the $S = frac{1}{2}$ moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature $theta_{mathrm{cw}} simeq $ -143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat ($mathit{C}$$_{mathrm{m}}$) below 5 K reveals a $mathit{C}$$_{mathrm{m}}$ $=$ $gamma T$ + $alpha T$$^{2}$ behavior. The significant $T$$^{2}$ contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-$T$ specific heat data, we estimate the dominant exchange scale to be $sim $ 36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations ($sim $ 45 K) as well as high-temperature susceptibility analysis ($sim$ 70 K). The linear specific heat coefficient is about 18 mJ/mol-K$^2$ which is somewhat larger than for typical Fermi liquids.



rate research

Read More

We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak single-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
133 - Ryui Kaneko , Satoshi Morita , 2014
We numerically study the Heisenberg models on triangular lattices by extending it from the simplest equilateral lattice with only the nearest-neighbor exchange interaction. We show that, by including an additional weak next-nearest-neighbor interaction, a quantum spin-liquid phase is stabilized against the antiferromagnetic order. The spin gap (triplet excitation gap) and spin correlation at long distances decay algebraically with increasing system size at the critical point between the antiferromagnetic phase and the spin-liquid phase. This algebraic behavior continues in the spin-liquid phase as well, indicating the presence of an unconventional critical (algebraic spin-liquid) phase characterized by the dynamical and anomalous critical exponents $z+etasim1$. Unusually small triplet and singlet excitation energies found in extended points of the Brillouin zone impose constraints on this algebraic spin liquid.
H3LiIr2O6 is the first honeycomb-lattice system without any signs of long-range magnetic order down to the lowest temperatures, raising the hope for the realization of an ideal Kitaev quantum spin liquid. Its honeycomb layers are coupled by interlayer hydrogen bonds. Static or dynamic disorder of these hydrogen bonds was proposed to strongly affect the magnetic exchange and to make Kitaev-type interactions dominant. Using dielectric spectroscopy, here we provide experimental evidence for dipolar relaxations in H3LiIr2O6 and deuterated D3LiIr2O6, which mirror the dynamics of protons and deuterons within the double-well potentials of the hydrogen bonds. The detected hydrogen dynamics reveals glassy freezing, characterized by a strong slowing down under cooling, with a crossover from thermally-activated hopping to quantum-mechanical tunneling towards low temperatures. Thus, besides being Kitaev quantum-spin-liquid candidates, these materials also are quantum paraelectrics. However, the small relaxation rates in the mHz range, found at low temperatures, practically realize quasi-static hydrogen disorder, as assumed in recent theoretical works to explain the quantum-spin-liquid ground state of both compounds.
535 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا