Do you want to publish a course? Click here

Muon spin spectroscopy in multiferroic (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$

537   0   0.0 ( 0 )
 Added by Haruhiko Kuroe
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.



rate research

Read More

We present an investigation into the structural and magnetic properties of Zn-substituted Cu$_{2}$OSeO$_{3}$, a system in which the skyrmion lattice (SkL) phase in the magnetic field-temperature phase diagram was previously seen to split as a function of increasing Zn concentration. We find that splitting of the SkL is only observed in polycrystalline samples and reflects the occurrence of several coexisting phases with different Zn content, each distinguished by different magnetic behaviour. No such multiphase behaviour is observed in single crystal samples.
Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba$_3$InIr$_2$O$_9$, where unpaired electrons are localized on mixed-valence Ir$_2$O$_9$ dimers with Ir$^{4.5+}$ ions. Despite the antiferromagnetic Curie-Weiss temperature on the order of 10 K, neither long-range magnetic order nor spin freezing are observed down to at least 20 mK, such that spins are short-range correlated and dynamic over nearly three decades in temperature. Quadratic power-law behavior of both the spin-lattice relaxation rate and specific heat indicates the gapless nature of the ground state. We envisage that this exotic behavior may be related to an unprecedented combination of the triangular and buckled honeycomb geometries of nearest-neighbor exchange couplings in the mixed-valence setting.
Dielectric and magnetic properties have been studied for poly-crystalline samples of quasi-one-dimensional frustrated spin-1/2 system Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$(M=Ni and Zn) which does not exhibit a three-dimensional magnetic transition due to quantum spin fluctuation and low dimensionality. A broad peak in the magnetic susceptibility - temperature curves originated from a short range helical ordering at low temperature is suppressed by the Ni and Zn substitution for Cu sites. The capacitance is found to anomalously increase with decreasing T below ~50 K, which is also suppressed by the impurity doping. The behavior of the anomalous capacitance component is found to be strongly connected with that of the magnetic susceptibility for Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ which indicates that the low-temperature dielectric response is driven by the magnetism.
We report results of a muon spin relaxation study of slow magnetic fluctuations in the pseudogap phase of underdoped single-crystalline YBa$_{2}$Cu$_{3}$O$_{y}$, $y = 6.77$ and 6.83. The dependence of the dynamic muon spin relaxation rate on applied magnetic field yields the rms magnitude~$Bmathrm{_{loc}^{rms}}$ and correlation time~$tau_c$ of fluctuating local fields at muon sites. The observed relaxation rates do not decrease with decreasing temperature~$T$ below the pseudogap onset at $T^ast$, as would be expected for a conventional magnetic transition; both $Bmathrm{_{loc}^{rms}}$ and $tau_c$ are roughly constant in the pseudogap phase down to the superconducting transition. Corresponding NMR relaxation rates are estimated to be too small to be observable. Our results put strong constraints on theories of the anomalous pseudogap magnetism in YBa$_{2}$Cu$_{3}$O$_{y}$.
Single crystal samples of the frustrated quasi one-dimensional quantum magnet Rb$_{2}$Cu$_{2}$Mo$_{3}$O$_{12}$ are investigated by magnetic, thermodynamic, and electron spin resonance (ESR) measurements. Quantum phase transitions between the gapped, magnetically ordered and fully saturated phases are observed. Surprisingly, the former has a distinctive three-dimensional character, while the latter is dominated by one-dimensional quantum spin fluctuations. The entire $H$-$T$ phase diagram is mapped out and found to be substantially anisotropic. In particular, the lower critical fields differ by over 50% depending on the direction of applied field, while the upper ones are almost isotropic, as is the magnetization above saturation. The ESR spectra are strongly dependent on field orientation and point to a helical structure with a rigidly defined spin rotation plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا