Do you want to publish a course? Click here

Atomically sharp domain walls in an antiferromagnet

61   0   0.0 ( 0 )
 Added by Filip Krizek
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its relativistic quantum fundamentals to applications in information technologies. The traditional focus of the field on ferromagnets has recently started to shift towards antiferromagnets which offer a rich materials landscape and utility in ultra-fast and neuromorphic devices insensitive to magnetic field perturbations. Here we report the observation that domain walls in an epitaxial crystal of antiferromagnetic CuMnAs can be atomically sharp. We reveal this ultimate domain wall scaling limit using differential phase contrast imaging within aberrationcorrected scanning transmission electron microscopy, which we complement by X-ray magnetic dichroism microscopy and ab initio calculations. We highlight that the atomically sharp domain walls are outside the remits of established spin-Hamiltonian theories and can offer device functionalities unparalleled in ferromagnets.



rate research

Read More

146 - Z.V. Gareeva , A.K. Zvezdin 2010
The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.
215 - J. Zhang , Y.-J. Wang , J. Liu 2019
Domains and domain walls are among the key factors that determine the performance of ferroelectric materials. In recent years, a unique type of domain walls, i.e., the sawtooth-shaped domain walls, has been observed in BiFeO$_{3}$ and PbTiO$_{3}$. Here, we build a minimal model to reveal the origin of these sawtooth-shaped domain walls. Incorporating this model into Monte-Carlo simulations shows that (i) the competition between the long-range Coulomb interaction (due to bound charges) and short-range interaction (due to opposite dipoles) is responsible for the formation of these peculiar domain walls and (ii) their relative strength is critical in determining the periodicity of these sawtooth-shaped domain walls. Necessary conditions to form such domain walls are also discussed.
The conductive domain wall (CDW) is extensively investigated in ferroelectrics, which can be considered as a quasi-two-dimensional reconfigurable conducting channel embedded into an insulating material. Therefore, it is highly important for the application of ferroelectric nanoelectronics. Hitherto, most CDW investigations are restricted in oxides, and limited work has been reported in non-oxides to the contrary. Here, by successfully synthesizing the non-oxide ferroelectric Sn2P2S6 single crystal, we observed and confirmed the domain wall conductivity by using different scanning probe techniques which origins from the nature of inclined domain walls. Moreover, the domains separated by CDW also exhibit distinguishable electrical conductivity due to the interfacial polarization charge with opposite signs. The result provides a novel platform for understanding electrical conductivity behavior of the domains and domain walls in non-oxide ferroelectrics.
The shape instability of magnetic domain walls under current is investigated in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain wall motion is driven by the spin transfer torque mechanism. A current density gradient is found either to stabilize domains with walls perpendicular to current lines or to produce finger-like patterns, depending on the domain wall motion direction. The instability mechanism is shown to result from the non-adiabatic contribution of the spin transfer torque mechanism.
The control of domain walls or spin textures is crucial for spintronic applications of antiferromagnets. Despite many efforts, it has been challenging to directly visualize antiferromagnetic domains or domain walls with nanoscale resolution, especially in magnetic field. Here, we report magnetic imaging of domain walls in several uniaxial antiferromagnets, the topological insulator MnBi$_2$Te$_4$ family and the Dirac semimetal EuMnBi$_2$, using cryogenic magnetic force microscopy (MFM). Our MFM results reveal higher magnetic susceptibility or net moments inside the domain walls than in domains. Domain walls in these antiferromagnets form randomly with strong thermal and magnetic field dependences. The direct visualization of domain walls and domain structure in magnetic field will not only facilitate the exploration of intrinsic phenomena in topological antiferromagnets, but also open a new path toward control and manipulation of domain walls or spin textures in functional antiferromagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا