Do you want to publish a course? Click here

Origin of sawtooth domain walls in ferroelectrics

216   0   0.0 ( 0 )
 Added by Dawei Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Domains and domain walls are among the key factors that determine the performance of ferroelectric materials. In recent years, a unique type of domain walls, i.e., the sawtooth-shaped domain walls, has been observed in BiFeO$_{3}$ and PbTiO$_{3}$. Here, we build a minimal model to reveal the origin of these sawtooth-shaped domain walls. Incorporating this model into Monte-Carlo simulations shows that (i) the competition between the long-range Coulomb interaction (due to bound charges) and short-range interaction (due to opposite dipoles) is responsible for the formation of these peculiar domain walls and (ii) their relative strength is critical in determining the periodicity of these sawtooth-shaped domain walls. Necessary conditions to form such domain walls are also discussed.



rate research

Read More

The conductive domain wall (CDW) is extensively investigated in ferroelectrics, which can be considered as a quasi-two-dimensional reconfigurable conducting channel embedded into an insulating material. Therefore, it is highly important for the application of ferroelectric nanoelectronics. Hitherto, most CDW investigations are restricted in oxides, and limited work has been reported in non-oxides to the contrary. Here, by successfully synthesizing the non-oxide ferroelectric Sn2P2S6 single crystal, we observed and confirmed the domain wall conductivity by using different scanning probe techniques which origins from the nature of inclined domain walls. Moreover, the domains separated by CDW also exhibit distinguishable electrical conductivity due to the interfacial polarization charge with opposite signs. The result provides a novel platform for understanding electrical conductivity behavior of the domains and domain walls in non-oxide ferroelectrics.
We study the influence of oxygen vacancies on the formation of charged 180$^circ$ domain walls in ferroelectric BaTiO$_3$ using first principles calculations. We show that it is favorable for vacancies to assemble in crystallographic planes, and that such clustering is accompanied by the formation of a charged domain wall. The domain wall has negative bound charge, which compensates the nominal positive charge of the vacancies and leads to a vanishing density of free charge at the wall. This is in contrast to the positively charged domain walls, which are nearly completely compensated by free charge from the bulk. The results thus explain the experimentally observed difference in electronic conductivity of the two types of domain walls, as well as the generic prevalence of charged domain walls in ferroelectrics. Moreover, the explicit demonstration of vacancy driven domain wall formation implies that specific charged domain wall configurations may be realized by bottom-up design for use in domain wall based information processing.
We study the effect of depolarization field related with inhomogeneous polarization distribution, strain and surface energy parameters on a domain wall profile near the surface of a ferroelectric film within the framework of Landau-Ginzburg-Devonshire phenomenology. Both inhomogeneous elastic stress and positive surface energy lead to the wall broadening at electrically screened surface. For ferroelectrics with weak piezoelectric coupling, the extrapolation length that defines surface energy parameter, affects the wall broadening more strongly than inhomogeneous elastic stress. Unexpectedly, the domain wall profile follows a long-range power law when approaching the surface, while it saturates exponentially in the bulk. In materials with high piezoelectric coupling and negligibly small surface energy (i.e. high extrapolation length) inhomogeneous elastic stress effect dominates.
Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to polarization fluctuations, and the results depend on $v_s$. For $v_s to infty$, the strain mediates an instantaneous electrostrictive interaction, which is long-range in the 90 degree wall case. For finite $v_s$, acoustic phonons damp the wall excitations, producing a continuum in the spectral function. As $v_s to 0$, a gapped mode emerges, which corresponds to the polarization oscillating in a fixed strain potential.
145 - Z.V. Gareeva , A.K. Zvezdin 2010
The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا