Do you want to publish a course? Click here

Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders

91   0   0.0 ( 0 )
 Added by Zahra Atashgahi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has been introduced as a solution to this problem. Most of the existing feature selection methods are computationally inefficient; inefficient algorithms lead to high energy consumption, which is not desirable for devices with limited computational and energy resources. In this paper, a novel and flexible method for unsupervised feature selection is proposed. This method, named QuickSelection, introduces the strength of the neuron in sparse neural networks as a criterion to measure the feature importance. This criterion, blended with sparsely connected denoising autoencoders trained with the sparse evolutionary training procedure, derives the importance of all input features simultaneously. We implement QuickSelection in a purely sparse manner as opposed to the typical approach of using a binary mask over connections to simulate sparsity. It results in a considerable speed increase and memory reduction. When tested on several benchmark datasets, including five low-dimensional and three high-dimensional datasets, the proposed method is able to achieve the best trade-off of classification and clustering accuracy, running time, and maximum memory usage, among widely used approaches for feature selection. Besides, our proposed method requires the least amount of energy among the state-of-the-art autoencoder-based feature selection methods.



rate research

Read More

This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation. When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient. We first consider the off-policy policy evaluation problem. To evaluate a new target policy, we analyze a Lasso fitted Q-evaluation method and establish a finite-sample error bound that has no polynomial dependence on the ambient dimension. To reduce the Lasso bias, we further propose a post model-selection estimator that applies fitted Q-evaluation to the features selected via group Lasso. Under an additional signal strength assumption, we derive a sharper instance-dependent error bound that depends on a divergence function measuring the distribution mismatch between the data distribution and occupancy measure of the target policy. Further, we study the Lasso fitted Q-iteration for batch policy optimization and establish a finite-sample error bound depending on the ratio between the number of relevant features and restricted minimal eigenvalue of the datas covariance. In the end, we complement the results with minimax lower bounds for batch-data policy evaluation/optimization that nearly match our upper bounds. The results suggest that having well-conditioned data is crucial for sparse batch policy learning.
139 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks. As a result, there is a surge of interest in using these models for making potentially important decisions in high-regret applications. However, despite GNNs impressive performance, it has been observed that carefully crafted perturbations on graph structures (or nodes attributes) lead them to make wrong predictions. Presence of these adversarial examples raises serious security concerns. Most of the existing robust GNN design/training methods are only applicable to white-box settings where model parameters are known and gradient based methods can be used by performing convex relaxation of the discrete graph domain. More importantly, these methods are not efficient and scalable which make them infeasible in time sensitive tasks and massive graph datasets. To overcome these limitations, we propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs in a generic and an efficient manner. On several applications, we show that the proposed techniques are significantly less computationally expensive and, in some cases, more robust than the state-of-the-art methods making them suitable to large-scale problems which were out of the reach of traditional robust training methods.
Given $m$ $d$-dimensional responsors and $n$ $d$-dimensional predictors, sparse regression finds at most $k$ predictors for each responsor for linear approximation, $1leq k leq d-1$. The key problem in sparse regression is subset selection, which usually suffers from high computational cost. Recent years, many improved approximate methods of subset selection have been published. However, less attention has been paid on the non-approximate method of subset selection, which is very necessary for many questions in data analysis. Here we consider sparse regression from the view of correlation, and propose the formula of conditional uncorrelation. Then an efficient non-approximate method of subset selection is proposed in which we do not need to calculate any coefficients in regression equation for candidate predictors. By the proposed method, the computational complexity is reduced from $O(frac{1}{6}{k^3}+mk^2+mkd)$ to $O(frac{1}{6}{k^3}+frac{1}{2}mk^2)$ for each candidate subset in sparse regression. Because the dimension $d$ is generally the number of observations or experiments and large enough, the proposed method can greatly improve the efficiency of non-approximate subset selection.
66 - Junjie Liu , Zhe Xu , Runbin Shi 2020
We present a novel network pruning algorithm called Dynamic Sparse Training that can jointly find the optimal network parameters and sparse network structure in a unified optimization process with trainable pruning thresholds. These thresholds can have fine-grained layer-wise adjustments dynamically via backpropagation. We demonstrate that our dynamic sparse training algorithm can easily train very sparse neural network models with little performance loss using the same number of training epochs as dense models. Dynamic Sparse Training achieves the state of the art performance compared with other sparse training algorithms on various network architectures. Additionally, we have several surprising observations that provide strong evidence for the effectiveness and efficiency of our algorithm. These observations reveal the underlying problems of traditional three-stage pruning algorithms and present the potential guidance provided by our algorithm to the design of more compact network architectures.
A common approach for feature selection is to examine the variable importance scores for a machine learning model, as a way to understand which features are the most relevant for making predictions. Given the significance of feature selection, it is crucial for the calculated importance scores to reflect reality. Falsely overestimating the importance of irrelevant features can lead to false discoveries, while underestimating importance of relevant features may lead us to discard important features, resulting in poor model performance. Additionally, black-box models like XGBoost provide state-of-the art predictive performance, but cannot be easily understood by humans, and thus we rely on variable importance scores or methods for explainability like SHAP to offer insight into their behavior. In this paper, we investigate the performance of variable importance as a feature selection method across various black-box and interpretable machine learning methods. We compare the ability of CART, Optimal Trees, XGBoost and SHAP to correctly identify the relevant subset of variables across a number of experiments. The results show that regardless of whether we use the native variable importance method or SHAP, XGBoost fails to clearly distinguish between relevant and irrelevant features. On the other hand, the interpretable methods are able to correctly and efficiently identify irrelevant features, and thus offer significantly better performance for feature selection.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا