Do you want to publish a course? Click here

Superconformal Boundaries in $4-epsilon$ dimensions

182   0   0.0 ( 0 )
 Added by Philine Van Vliet
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Boundaries in three-dimensional $mathcal{N}=2$ superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining $2d$ boundary algebra exhibits $mathcal{N}=(0,2)$ or $mathcal{N}=(1,1)$ supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $mathcal{N}=(1,1)$ supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the $epsilon$-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a supersymmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.



rate research

Read More

We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are related, and we discuss the consequences of this relation for the Weyl anomaly coefficients as well as in a few examples, including the supersymmetric Renyi entropy. Imposing consistency with existing results, we propose a general relation that could hold for sufficiently supersymmetric defects of arbitrary dimension and codimension. Turning to $mathcal{N}=(2,2)$ surface defects in $mathcal{N} geqslant 2$ superconformal field theories, we study the associated chiral algebra. We work out various properties of the modules introduced by the defect in the original chiral algebra. In particular, we find that the one-point function of the stress tensor controls the dimension of the defect identity in chiral algebra, providing a novel way to compute it, once the defect identity is identified. Studying a few examples, we show explicitly how these properties are realized.
We construct superconformal gauged sigma models with extended rigid supersymmetry in three dimensions. Those with N>4 have necessarily flat targets, but the models with N leq 4 admit non-flat targets, which are cones with appropriate Sasakian base manifolds. Superconformal symmetry also requires that the three dimensional spacetimes admit conformal Killing spinors which we examine in detail. We present explicit results for the gauged superconformal theories for N=1,2. In particular, we gauge a suitable subgroup of the isometry group of the cone in a superconformal way. We finally show how these sigma models can be obtained from Poincare supergravity. This connection is shown to necessarily involve a subset of the auxiliary fields of supergravity for N geq 2.
61 - Jeong-Hyuck Park 1997
N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In other words, these superfields are quasi-primary by analogy with two dimensional conformal field theory. Based on these results, we find the general forms of the two-point and the three-point correlation functions of the quasi-primary superfields in a group theoretical way. In particular, we show that the two-point function of the supercurrent is unique up to a constant and the general form of the three-point function of the supercurrent has two free parameters.
We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of freedom. The su(1,1|2) invariant models are governed by two scalar potentials obeying a system of nonlinear partial differential equations which generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equations. As an application, the N=4 superconformal extension of the three-particle (A-type) Calogero model generates a unique G_2-type Hamiltonian featuring three-body interactions. We fully analyze the N=4 superconformal three- and four-particle models based on the root systems of A_1 + G_2 and F_4, respectively. Beyond Wyllards solutions we find a list of new models, whose translational non-invariance of the center-of-mass motion fails to decouple and extends even to the relative particle motion.
We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An important feature of this quantization is that it has a preferred basis in which the structure constants of the quantum algebra are equal to the OPE coefficients of the underlying superconformal theory. We identify several nontrivial conditions that the quantum algebra must satisfy in this basis. We consider examples of theories for which the moduli space of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singularity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can be uniquely determined. These algebras are related to higher spin algebras. For Kleinian singularities the algebras can be characterized abstractly - they are spherical subalgebras of symplectic reflection algebras - but the preferred basis is not easily determined. We find evidence in these examples that for a given choice of quantum algebra (defined up to a certain gauge equivalence), there is at most one choice of canonical basis. We conjecture that this is the case for general N=4 SCFTs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا