Do you want to publish a course? Click here

N=1 Superconformal Symmetry in Four Dimensions

62   0   0.0 ( 0 )
 Added by Jeong-Hyuck Park
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In other words, these superfields are quasi-primary by analogy with two dimensional conformal field theory. Based on these results, we find the general forms of the two-point and the three-point correlation functions of the quasi-primary superfields in a group theoretical way. In particular, we show that the two-point function of the supercurrent is unique up to a constant and the general form of the three-point function of the supercurrent has two free parameters.



rate research

Read More

We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are related, and we discuss the consequences of this relation for the Weyl anomaly coefficients as well as in a few examples, including the supersymmetric Renyi entropy. Imposing consistency with existing results, we propose a general relation that could hold for sufficiently supersymmetric defects of arbitrary dimension and codimension. Turning to $mathcal{N}=(2,2)$ surface defects in $mathcal{N} geqslant 2$ superconformal field theories, we study the associated chiral algebra. We work out various properties of the modules introduced by the defect in the original chiral algebra. In particular, we find that the one-point function of the stress tensor controls the dimension of the defect identity in chiral algebra, providing a novel way to compute it, once the defect identity is identified. Studying a few examples, we show explicitly how these properties are realized.
We present a general method for computing the central charges a and c of N=2 superconformal field theories corresponding to singular points in the moduli space of N=2 gauge theories. Our method relates a and c to the U(1)_R anomalies of the topologically twisted gauge theory. We evaluate these anomalies by studying the holomorphic dependence of the path integral measure on the moduli. We calculate a and c for superconformal points in a variety of gauge theories, including N=4 SU(N), N=2 pure SU(N) Yang-Mills, and USp(2N) with 1 massless antisymmetric and 4 massive fundamental hypermultiplets. In the latter case, we reproduce the conformal and flavor central charges previously calculated using the gravity duals of these gauge theories. For any SCFT in the class under consideration, we derive a previously conjectured expression for 2a-c in terms of the sum of the dimensions of operators parameterizing the Coulomb branch. Finally, we prove that the ratio a/c is bounded above by 5/4 and below by 1/2.
Using the off-shell formulation for ${mathcal N}=2$ conformal supergravity in four dimensions, we propose superconformal higher-spin multiplets of conserved currents and their associated unconstrained gauge prepotentials. The latter are used to construct locally superconformal chiral actions, which are demonstrated to be gauge invariant in arbitrary conformally flat backgrounds.
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we argue that for a special case of these theories (dual to M5 branes probing ADE singularities), we obtain 4d N = 1 theories whose space of marginal deformations is given by the moduli space of flat ADE connections on a Riemann surface.
We formulate off-shell N=1 superconformal higher spin multiplets in four spacetime dimensions and briefly discuss their coupling to conformal supergravity. As an example, we explicitly work out the coupling of the superconformal gravitino multiplet to conformal supergravity. The corresponding action is super-Weyl invariant for arbitrary supergravity backgrounds. However, it is gauge invariant only if the supersymmetric Bach tensor vanishes. This is similar to linearised conformal supergravity in curved background.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا