Do you want to publish a course? Click here

N=4 superconformal Calogero models

275   0   0.0 ( 0 )
 Added by Olaf Lechtenfeld
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of freedom. The su(1,1|2) invariant models are governed by two scalar potentials obeying a system of nonlinear partial differential equations which generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equations. As an application, the N=4 superconformal extension of the three-particle (A-type) Calogero model generates a unique G_2-type Hamiltonian featuring three-body interactions. We fully analyze the N=4 superconformal three- and four-particle models based on the root systems of A_1 + G_2 and F_4, respectively. Beyond Wyllards solutions we find a list of new models, whose translational non-invariance of the center-of-mass motion fails to decouple and extends even to the relative particle motion.



rate research

Read More

101 - Sergei M. Kuzenko 2021
We present $mathcal{N}=2$ superconformal $mathsf{U}(1)$ duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the $mathcal{N}=4$ $mathsf{SU}(N)$ super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group $mathsf{SU}(N)$ is spontaneously broken to $mathsf{SU}(N-1) times mathsf{U}(1)$; and (ii) the dynamics is captured by a single $mathcal{N}=2$ vector multiplet associated with the $mathsf{U}(1)$ factor of the unbroken group. Additionally, a local $mathsf{U}(1)$ duality-invariant action generating the $mathcal{N}=2$ super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed $mathsf{U}(1)$ duality-invariant $mathcal{N}=1$ superconformal electrodynamics, we introduce its $mathsf{SL}(2,{mathbb R})$ duality-invariant coupling to the dilaton-axion multiplet.
The motion of a particle near the Reissner-Nordstrom black hole horizon is described by conformal mechanics. In this paper we present an extended one-dimensional analysis of the N=4 superconformal mechanics coupled to n copies of N=8, d=1 vector supermultiplets. The constructed system possesses a special Kahler geometry in the scalar sector of the vector multiplets as well as an N=4 superconformal symmetry which is provided by a proper coupling to a dilaton superfield. The superconformal symmetry completely fixes the resulting action. We explicitly demonstrate that the electric and magnetic charges, presenting in the effective black hole action, appear as a result of resolving constraints on the auxiliary components of the vector supermultiplets. We present the component action, supercharges and Hamiltonian with all fermionic terms included. One of the possible ways to generalize the black hole potential is to consider a modified version of the N=4 superconformal multiplet where its auxiliary components acquire non-zero constant values. We explicitly write down the corresponding modified black hole potential.
In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duality transformation for G_2 and F_4 SCIs is equivalent to a change of integration variables. Equality of SCIs for SP(2N) and SO(2N+1) group theories is proved in several important special cases. Reduction of SCIs to partition functions of 3d $mathcal{N}=2$ SYM theories with one matter field in the adjoint representation is investigated, corresponding 3d dual partners are found, and some new related hyperbolic beta integrals are conjectured.
Recent studies of scattering amplitudes in planar N=4 SYM theory revealed the existence of a hidden dual superconformal symmetry. Together with the conventional superconformal symmetry it gives rise to powerful restrictions on the planar scattering amplitudes to all loops. We study the general form of the invariants of both symmetries. We first construct an integral representation for the most general dual superconformal invariants and show that it allows a considerable freedom in the choice of the integration measure. We then perform a half-Fourier transform to twistor space, where conventional conformal symmetry is realized locally, derive the resulting conformal Ward identity for the integration measure and show that it admits a unique solution. Thus, the combination of dual and conventional superconformal symmetries, together with invariance under helicity rescalings, completely fixes the form of the invariants. The expressions obtained generalize the known tree and one-loop superconformal invariants and coincide with the recently proposed coefficients of the leading singularities of the scattering amplitudes as contour integrals over Grassmannians.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا