No Arabic abstract
Large software systems tune hundreds of constants to optimize their runtime performance. These values are commonly derived through intuition, lab tests, or A/B tests. A one-size-fits-all approach is often sub-optimal as the best value depends on runtime context. In this paper, we provide an experimental approach to replace constants with learned contextual functions for Skype - a widely used real-time communication (RTC) application. We present Resonance, a system based on contextual bandits (CB). We describe experiences from three real-world experiments: applying it to the audio, video, and transport components in Skype. We surface a unique and practical challenge of performing machine learning (ML) inference in large software systems written using encapsulation principles. Finally, we open-source FeatureBroker, a library to reduce the friction in adopting ML models in such development environments
Manufacturing Operations Management (MOM) systems are complex in the sense that they integrate data from heterogeneous systems inside the automation pyramid. The need for context-aware analytics arises from the dynamics of these systems that influence data generation and hamper comparability of analytics, especially predictive models (e.g. predictive maintenance), where concept drift affects application of these models in the future. Recently, an increasing amount of research has been directed towards data integration using semantic context models. Manual construction of such context models is an elaborate and error-prone task. Therefore, we pose the challenge to apply combinations of knowledge extraction techniques in the domain of analytics in MOM, which comprises the scope of data integration within Product Life-cycle Management (PLM), Enterprise Resource Planning (ERP), and Manufacturing Execution Systems (MES). We describe motivations, technological challenges and show benefits of context-aware analytics, which leverage from and regard the interconnectedness of semantic context data. Our example scenario shows the need for distribution and effective change tracking of context information.
Segmentation-based scene text detection methods have been widely adopted for arbitrary-shaped text detection recently, since they make accurate pixel-level predictions on curved text instances and can facilitate real-time inference without time-consuming processing on anchors. However, current segmentation-based models are unable to learn the shapes of curved texts and often require complex label assignments or repeated feature aggregations for more accurate detection. In this paper, we propose RSCA: a Real-time Segmentation-based Context-Aware model for arbitrary-shaped scene text detection, which sets a strong baseline for scene text detection with two simple yet effective strategies: Local Context-Aware Upsampling and Dynamic Text-Spine Labeling, which model local spatial transformation and simplify label assignments separately. Based on these strategies, RSCA achieves state-of-the-art performance in both speed and accuracy, without complex label assignments or repeated feature aggregations. We conduct extensive experiments on multiple benchmarks to validate the effectiveness of our method. RSCA-640 reaches 83.9% F-measure at 48.3 FPS on CTW1500 dataset.
Predictive models such as decision trees and neural networks may produce discrimination in their predictions. This paper proposes a method to post-process the predictions of a predictive model to make the processed predictions non-discriminatory. The method considers multiple protected variables together. Multiple protected variables make the problem more challenging than a simple protected variable. The method uses a well-cited discrimination metric and adapts it to allow the specification of explanatory variables, such as position, profession, education, that describe the contexts of the applications. It models the post-processing of predictions problem as a nonlinear optimization problem to find best adjustments to the predictions so that the discrimination constraints of all protected variables are all met at the same time. The proposed method is independent of classification methods. It can handle the cases that existing methods cannot handle: satisfying multiple protected attributes at the same time, allowing multiple explanatory attributes, and being independent of classification model types. An evaluation using four real world data sets shows that the proposed method is as effectively as existing methods, in addition to its extra power.
A common approach to solving physical reasoning tasks is to train a value learner on example tasks. A limitation of such an approach is that it requires learning about object dynamics solely from reward values assigned to the final state of a rollout of the environment. This study aims to address this limitation by augmenting the reward value with self-supervised signals about object dynamics. Specifically, we train the model to characterize the similarity of two environment rollouts, jointly with predicting the outcome of the reasoning task. This similarity can be defined as a distance measure between the trajectory of objects in the two rollouts, or learned directly from pixels using a contrastive formulation. Empirically, we find that this approach leads to substantial performance improvements on the PHYRE benchmark for physical reasoning (Bakhtin et al., 2019), establishing a new state-of-the-art.
In this paper, we propose a refinement-based adaptation approach for the architecture of distributed group communication support applications. Unlike most of previous works, our approach reaches implementable, context-aware and dynamically adaptable architectures. To model the context, we manage simultaneously four parameters that influence Qos provided by the application. These parameters are: the available bandwidth, the exchanged data communication priority, the energy level and the available memory for processing. These parameters make it possible to refine the choice between the various architectural configurations when passing from a given abstraction level to the lower level which implements it. Our approach allows the importance degree associated with each parameter to be adapted dynamically. To implement adaptation, we switch between the various configurations of the same level, and we modify the state of the entities of a given configuration when necessary. We adopt the direct and mediated Producer- Consumer architectural styles and graphs for architecture modelling. In order to validate our approach we elaborate a simulation model.