Do you want to publish a course? Click here

Context-Aware Analytics in MOM Applications

136   0   0.0 ( 0 )
 Added by Martin Homola
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Manufacturing Operations Management (MOM) systems are complex in the sense that they integrate data from heterogeneous systems inside the automation pyramid. The need for context-aware analytics arises from the dynamics of these systems that influence data generation and hamper comparability of analytics, especially predictive models (e.g. predictive maintenance), where concept drift affects application of these models in the future. Recently, an increasing amount of research has been directed towards data integration using semantic context models. Manual construction of such context models is an elaborate and error-prone task. Therefore, we pose the challenge to apply combinations of knowledge extraction techniques in the domain of analytics in MOM, which comprises the scope of data integration within Product Life-cycle Management (PLM), Enterprise Resource Planning (ERP), and Manufacturing Execution Systems (MES). We describe motivations, technological challenges and show benefits of context-aware analytics, which leverage from and regard the interconnectedness of semantic context data. Our example scenario shows the need for distribution and effective change tracking of context information.



rate research

Read More

Large software systems tune hundreds of constants to optimize their runtime performance. These values are commonly derived through intuition, lab tests, or A/B tests. A one-size-fits-all approach is often sub-optimal as the best value depends on runtime context. In this paper, we provide an experimental approach to replace constants with learned contextual functions for Skype - a widely used real-time communication (RTC) application. We present Resonance, a system based on contextual bandits (CB). We describe experiences from three real-world experiments: applying it to the audio, video, and transport components in Skype. We surface a unique and practical challenge of performing machine learning (ML) inference in large software systems written using encapsulation principles. Finally, we open-source FeatureBroker, a library to reduce the friction in adopting ML models in such development environments
Decades of continuous scaling has reduced the energy of unit computing to virtually zero, while energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous IoT nodes. This paper presents and analyzes the trade-offs between the energies required for communication and computation in a wireless sensor network, deployed in a mesh architecture over a 2400-acre university campus, and is targeted towards multi-sensor measurement of temperature, humidity and water nitrate concentration for smart agriculture. Several scenarios involving In-Sensor-Analytics (ISA), Collaborative Intelligence (CI) and Context-Aware-Switching (CAS) of the cluster-head during CI has been considered. A real-time co-optimization algorithm has been developed for minimizing the energy consumption in the network, hence maximizing the overall battery lifetime of individual nodes. Measurement results show that the proposed ISA consumes ~467X lower energy as compared to traditional Bluetooth Low Energy (BLE) communication, and ~69,500X lower energy as compared with Long Range (LoRa) communication. When the ISA is implemented in conjunction with LoRa, the lifetime of the node increases from a mere 4.3 hours to 66.6 days with a 230 mAh coin cell battery, while preserving more than 98% of the total information. The CI and CAS algorithms help in extending the worst-case node lifetime by an additional 50%, thereby exhibiting an overall network lifetime of ~104 days, which is >90% of the theoretical limits as posed by the leakage currents present in the system, while effectively transferring information sampled every second. A web-based monitoring system was developed to archive the measured data in a continuous manner, and to report anomalies in the measured data.
In this paper, we propose a refinement-based adaptation approach for the architecture of distributed group communication support applications. Unlike most of previous works, our approach reaches implementable, context-aware and dynamically adaptable architectures. To model the context, we manage simultaneously four parameters that influence Qos provided by the application. These parameters are: the available bandwidth, the exchanged data communication priority, the energy level and the available memory for processing. These parameters make it possible to refine the choice between the various architectural configurations when passing from a given abstraction level to the lower level which implements it. Our approach allows the importance degree associated with each parameter to be adapted dynamically. To implement adaptation, we switch between the various configurations of the same level, and we modify the state of the entities of a given configuration when necessary. We adopt the direct and mediated Producer- Consumer architectural styles and graphs for architecture modelling. In order to validate our approach we elaborate a simulation model.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. They typically use the same filters over the whole image or over large image patches. Only then do they estimate local scale to compensate for perspective distortion. This is typically achieved by training an auxiliary classifier to select, for predefined image patches, the best kernel size among a limited set of choices. As such, these methods are not end-to-end trainable and restricted in the scope of context they can leverage. In this paper, we introduce an end-to-end trainable deep architecture that combines features obtained using multiple receptive field sizes and learns the importance of each such feature at each image location. In other words, our approach adaptively encodes the scale of the contextual information required to accurately predict crowd density. This yields an algorithm that outperforms state-of-the-art crowd counting methods, especially when perspective effects are strong.
Making a single network effectively address diverse contexts---learning the variations within a dataset or multiple datasets---is an intriguing step towards achieving generalized intelligence. Existing approaches of deepening, widening, and assembling networks are not cost effective in general. In view of this, networks which can allocate resources according to the context of the input and regulate flow of information across the network are effective. In this paper, we present Context-Aware Multipath Network (CAMNet), a multi-path neural network with data-dependant routing between parallel tensors. We show that our model performs as a generalized model capturing variations in individual datasets and multiple different datasets, both simultaneously and sequentially. CAMNet surpasses the performance of classification and pixel-labeling tasks in comparison with the equivalent single-path, multi-path, and deeper single-path networks, considering datasets individually, sequentially, and in combination. The data-dependent routing between tensors in CAMNet enables the model to control the flow of information end-to-end, deciding which resources to be common or domain-specific.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا