Do you want to publish a course? Click here

Uncertainty Quantification by Random Measures and Fields

131   0   0.0 ( 0 )
 Added by Caleb Bastian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a general framework for uncertainty quantification that is a mosaic of interconnected models. We define global first and second order structural and correlative sensitivity analyses for random counting measures acting on risk functionals of input-output maps. These are the ANOVA decomposition of the intensity measure and the decomposition of the random measure variance, each into subspaces. Orthogonal random measures furnish sensitivity distributions. We show that the random counting measure may be used to construct positive random fields, which admit decompositions of covariance and sensitivity indices and may be used to represent interacting particle systems. The first and second order global sensitivity analyses conveyed through random counting measures elucidate and integrate different notions of uncertainty quantification, and the global sensitivity analysis of random fields conveys the proportionate functional contributions to covariance. This framework complements others when used in conjunction with for instance algorithmic uncertainty and model selection uncertainty frameworks.

rate research

Read More

The tube method or the volume-of-tube method approximates the tail probability of the maximum of a smooth Gaussian random field with zero mean and unit variance. This method evaluates the volume of a spherical tube about the index set, and then transforms it to the tail probability. In this study, we generalize the tube method to a case in which the variance is not constant. We provide the volume formula for a spherical tube with a non-constant radius in terms of curvature tensors, and the tail probability formula of the maximum of a Gaussian random field with inhomogeneous variance, as well as its Laplace approximation. In particular, the critical radius of the tube is generalized for evaluation of the asymptotic approximation error. As an example, we discuss the approximation of the largest eigenvalue distribution of the Wishart matrix with a non-identity matrix parameter. The Bonferroni method is the tube method when the index set is a finite set. We provide the formula for the asymptotic approximation error for the Bonferroni method when the variance is not constant.
Rare events, and more general risk-sensitive quantities-of-interest (QoIs), are significantly impacted by uncertainty in the tail behavior of a distribution. Uncertainty in the tail can take many different forms, each of which leads to a particular ambiguity set of alternative models. Distributional robustness bounds over such an ambiguity set constitute a stress-test of the model. In this paper we develop a method, utilizing Renyi-divergences, of constructing the ambiguity set that captures a user-specified form of tail-perturbation. We then obtain distributional robustness bounds (performance guarantees) for risk-sensitive QoIs over these ambiguity sets, using the known connection between Renyi-divergences and robustness for risk-sensitive QoIs. We also expand on this connection in several ways, including a generalization of the Donsker-Varadhan variational formula to Renyi divergences, and various tightness results. These ideas are illustrated through applications to uncertainty quantification in a model of lithium-ion battery failure, robustness of large deviations rate functions, and risk-sensitive distributionally robust optimization for option pricing.
Information-theory based variational principles have proven effective at providing scalable uncertainty quantification (i.e. robustness) bounds for quantities of interest in the presence of nonparametric model-form uncertainty. In this work, we combine such variational formulas with functional inequalities (Poincar{e}, $log$-Sobolev, Liapunov functions) to derive explicit uncertainty quantification bounds for time-averaged observables, comparing a Markov process to a second (not necessarily Markov) process. These bounds are well-behaved in the infinite-time limit and apply to steady-states of both discrete and continuous-time Markov processes.
We study derangements of ${1,2,ldots,n}$ under the Ewens distribution with parameter $theta$. We give the moments and marginal distributions of the cycle counts, the number of cycles, and asymptotic distributions for large $n$. We develop a ${0,1}$-valued non-homogeneous Markov chain with the property that the counts of lengths of spacings between the 1s have the derangement distribution. This chain, an analog of the so-called Feller Coupling, provides a simple way to simulate derangements in time independent of $theta$ for a given $n$ and linear in the size of the derangement.
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{beta} > 0$ for I. equivalence of the measures $mu$ and $tilde{mu}$, and II. uniform asymptotic optimality of linear predictions for $mu$ based on the misspecified measure $tilde{mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Matern Gaussian random fields, where $A$ and $tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $mathcal{D}subsetmathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Matern fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا