No Arabic abstract
We present a theoretical study of the collective quasiparticle excitations responsible for the electromagnetic response of ultrathin plane-parallel homogeneous periodic single-wall carbon nanotube arrays and weakly inhomogeneous single-wall carbon nanotube films. We show that in addition to varying film composition, the collective response can be controlled by varying the film thickness. For single-type nanotube arrays, the real part of the dielectric response shows a broad negative refraction band near a quantum interband transition of the constituent nanotube, whereby the system behaves as a hyperbolic metamaterial at higher frequencies than those classical plasma oscillations have to offer. By decreasing nanotube diameters it is possible to push this negative refraction into the visible region, and using weakly inhomogeneous multi-type nanotube films broadens its bandwidth.
We study macroscopically-aligned single-wall carbon nanotube arrays with uniform lengths via polarization-dependent terahertz and infrared transmission spectroscopy. Polarization anisotropy is extreme at frequencies less than $sim$3 THz with no sign of attenuation when the polarization is perpendicular to the alignment direction. The attenuation for both parallel and perpendicular polarizations increases with increasing frequency, exhibiting a pronounced and broad peak around 10 THz in the parallel case. We model the electromagnetic response of the sample by taking into account both radiative scattering and absorption losses. We show that our sample acts as an effective antenna due to the high degree of alignment, exhibiting much larger radiative scattering than absorption in the mid/far-infrared range. Our calculated attenuation spectrum clearly shows a non-Drude peak at $sim$10 THz in agreement with the experiment.
Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum locking of the Weyl Hamiltonian leads to a coupling between charge and longitudinal spin fluctuations, while transverse spin fluctuations remain decoupled from the charge. A real Weyl semimetal with multiple Weyl nodes can show this charge-spin coupling in equilibrium if its crystal symmetry is sufficiently low. All Weyl semimetals are expected to show this coupling if they are driven into a non-equilibrium stationary state with different occupations of Weyl nodes, for example by exploiting the chiral anomaly. Based on the response tensor, we investigate the low-energy collective excitations of interacting Weyl fermions. For a local Hubbard interaction, the charge-spin coupling leads to a dramatic change of the zero-sound dispersion: its velocity becomes independent of the interaction strength and the chemical potential and is given solely by the Fermi velocity. In the presence of long-range Coulomb interactions, the coupling transforms the plasmon modes into spin plasmons. For real Weyl semimetals with multiple Weyl nodes, the collective modes are strongly affected by the presence of parallel static electric and magnetic fields, due to the chiral anomaly. In particular, the zero-sound frequency at fixed momentum and the spin content of the spin plasmons go through cusp singularities as the chemical potential of one of the Weyl cones is tuned through the Weyl node. We discuss possible experiments that could provide smoking-gun evidence for Weyl physics.
We investigate the optical properties of an ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time reversal symmetry breaking as one of key ingredients for the optical activity.
Elementary electronic excitations, which are due to the Coulomb-field scatterings, present the diverse phenomena in 3D, 2D, 1D-nanotube electron gases, graphene and carbon nanotubes. The critical mechanisms cover the dimension-dependent bare Coulomb potentials, energy dispersions, and free/valence carrier density. They are responsible for the main features, the available excitation channels (the electron-hole regions), the joint van Hove singularities, the undamped/damped collective excitations at small/sufficiently high transferred momenta, the momentum dependences of plasmon frequencies (acoustic and optical modes), and their categories (the intraband and inter-pi-band plasmons). There exists certain significant similarities and difference among various systems. The (momentum/ angular momentum, frequency)-excitation phase diagrams are directly reflected in the propagation of plasma waves.
Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit exhibit superconducting switching currents which can be controlled with a gate electrode. Shapiro voltage steps can be observed under radiofrequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard RCSJ model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate-dependent, suggesting a diffusive contact of the nanotube.