Do you want to publish a course? Click here

Crystallization Mechanism Tuned Phase-Change Materials: Quantum Effect on Te-Terminated Boundary

131   0   0.0 ( 0 )
 Added by Wen-Xiong Song
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

While phase-change materials (PCMs) composed of chalcogenide have different crystallization mechanisms (CM), such as nucleation-dominated Ge2Sb2Te5 (GST) and growth-dominated GeTe (GT), revealing the essential reason of CM as well as the tuned properties is still a long-standing issue. Here, we remarkably find the distinct stability of Te-terminated (111) boundaries (TTB) in different systems, which provides a path to understand the difference in CM. It stems from the quantum effect of molecular orbital theory: the optimal local chemical composition results in the formation of TTB without dangling bonds (DB) in GST but with DB in GT, where DB destabilizes boundary due to its distorted local environment mismatching Oh symmetry of p orbitals. Moreover, the inner vacancy concentration in GST is alterable and controlled by TTB, manifested by the absence of cubic-to-hexagonal transition in carbon-doped GST of small grains and minimized inner vacancy. Finally, the charge transport property (CTP) is controlled by boundary via changing the density of charge or hole nearby as well as vacancy. These findings open the door to tune CTP by CM, which is necessary for achieving low-power and ultrafast devices.



rate research

Read More

Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is well known for its structural transformation, which produces a significant change in the optical properties and is exploited in optical data storage systems. The finding paves the way to the control of forces in nanosystems, such as micro- or nanoswitches by stimulating the phase change transition via localized heat sources.
High-speed electrical switching of Ge2Sb2Te5 (GST) remains a challenging task due to the large impedance mismatch between the low-conductivity amorphous state and the high-conductivity crystalline state. In this letter, we demonstrate an effective doping scheme using nickel to reduce the resistivity contrast between the amorphous and crystalline states by nearly three orders of magnitude. Most importantly, our results show that doping produces the desired electrical performance without adversely affecting the films optical properties. The nickel doping level is approximately 2% and the lattice structure remains nearly unchanged when compared with undoped-GST. The refractive indices at amorphous and crystalline states were obtained using ellipsometry which echoes the results from XRD. The materials thermal transport properties are measured using time-domain thermoreflectance (TDTR), showing no change upon doping. The advantages of this doping system will open up new opportunities for designing electrically reconfigurable high speed optical elements in the near-infrared spectrum.
134 - Po Chapuis 2007
Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating and enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect the latent heat and even improve the phase change behaviour as well as the mechanical properties.
A long-standing question for avant-grade data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics mechanisms accompanying the out-of-equilibrium phases is still missing. Here, after overheating a phase-change chalcogenide superlattice by an ultrafast laser pulse, we indirectly track the lattice relaxation by time resolved X-ray absorption spectroscopy (tr-XAS) with a sub-ns time resolution. The novel approach to the tr-XAS experimental results reported in this work provides an atomistic insight of the mechanism that takes place during the cooling process, meanwhile a first-principles model mimicking the microscopic distortions accounts for a straightforward representation of the observed dynamics. Finally, we envisage that our approach can be applied in future studies addressing the role of dynamical structural strain in phase-change materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا