Do you want to publish a course? Click here

Weighted automata are compact and actively learnable

62   0   0.0 ( 0 )
 Added by Artem Kaznatcheev
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We show that weighted automata over the field of two elements can be exponentially more compact than non-deterministic finite state automata. To show this, we combine ideas from automata theory and communication complexity. However, weighted automata are also efficiently learnable in Angluins minimal adequate teacher model in a number of queries that is polynomial in the size of the minimal weighted automaton.. We include an algorithm for learning WAs over any field based on a linear algebraic generalization of the Angluin-Schapire algorithm. Together, this produces a surprising result: weighted automata over fields are structured enough that even though they can be very compact, they are still efficiently learnable.



rate research

Read More

A weight normalization procedure, commonly called pushing, is introduced for weighted tree automata (wta) over commutative semifields. The normalization preserves the recognized weighted tree language even for nondeterministic wta, but it is most useful for bottom-up deterministic wta, where it can be used for minimization and equivalence testing. In both applications a careful selection of the weights to be redistributed followed by normalization allows a reduction of the general problem to the corresponding problem for bottom-up deterministic unweighted tree automata. This approach was already successfully used by Mohri and Eisner for the minimization of deterministic weighted string automata. Moreover, the new equivalence test for two wta $M$ and $M$ runs in time $mathcal O((lvert M rvert + lvert Mrvert) cdot log {(lvert Qrvert + lvert Qrvert)})$, where $Q$ and $Q$ are the states of $M$ and $M$, respectively, which improves the previously best run-time $mathcal O(lvert M rvert cdot lvert Mrvert)$.
284 - Kuize Zhang 2020
In this paper, by developing appropriate methods, we for the first time obtain characterization of four fundamental notions of detectability for general labeled weighted automata over monoids (denoted by $mathcal{A}^{mathfrak{M}}$ for short), where the four notions are strong (periodic) detectability (SD and SPD) and weak (periodic) detectability (WD and WPD). Firstly, we formulate the notions of concurrent composition, observer, and detector for $mathcal{A}^{mathfrak{M}}$. Secondly, we use the concurrent composition to give an equivalent condition for SD, use the detector to give an equivalent condition for SPD, and use the observer to give equivalent conditions for WD and WPD, all for general $mathcal{A}^{mathfrak{M}}$ without any assumption. Thirdly, we prove that for a labeled weighted automaton over monoid $(mathbb{Q}^k,+)$ (denoted by $mathcal{A}^{mathbb{Q}^k}$), its concurrent composition, observer, and detector can be computed in NP, $2$-EXPTIME, and $2$-EXPTIME, respectively, by developing novel connections between $mathcal{A}^{mathbb{Q}^k}$ and the NP-complete exact path length problem (proved by [Nyk{a}nen and Ukkonen, 2002]) and a subclass of Presburger arithmetic. As a result, we prove that for $mathcal{A}^{mathbb{Q}^k}$, SD can be verified in coNP, while SPD, WD, and WPD can be verified in $2$-EXPTIME. Particularly, for $mathcal{A}^{mathbb{Q}^k}$ in which from every state, a distinct state can be reached through some unobservable, instantaneous path, its detector can be computed in NP, and SPD can be verified in coNP. Finally, we prove that the problems of verifying SD and SPD of deterministic $mathcal{A}^{mathbb{N}}$ over monoid $(mathbb{N},+)$ are both NP-hard. The original methods developed in this paper will provide foundations for characterizing other fundamental properties (e.g., diagnosability and opacity) in $mathcal{A}^{mathfrak{M}}$.
In GFG automata, it is possible to resolve nondeterminism in a way that only depends on the past and still accepts all the words in the language. The motivation for GFG automata comes from their adequacy for games and synthesis, wherein general nondeterminism is inappropriate. We continue the ongoing effort of studying the power of nondeterminism in GFG automata. Initial indications have hinted that every GFG automaton embodies a deterministic one. Today we know that this is not the case, and in fact GFG automata may be exponentially more succinct than deterministic ones. We focus on the typeness question, namely the question of whether a GFG automaton with a certain acceptance condition has an equivalent GFG automaton with a weaker acceptance condition on the same structure. Beyond the theoretical interest in studying typeness, its existence implies efficient translations among different acceptance conditions. This practical issue is of special interest in the context of games, where the Buchi and co-Buchi conditions admit memoryless strategies for both players. Typeness is known to hold for deterministic automata and not to hold for general nondeterministic automata. We show that GFG automata enjoy the benefits of typeness, similarly to the case of deterministic automata. In particular, when Rabin or Streett GFG automata have equivalent Buchi or co-Buchi GFG automata, respectively, then such equivalent automata can be defined on a substructure of the original automata. Using our typeness results, we further study the place of GFG automata in between deterministic and nondeterministic ones. Specifically, considering automata complementation, we show that GFG automata lean toward nondeterministic ones, admitting an exponential state blow-up in the complementation of a Streett automaton into a Rabin automaton, as opposed to the constant blow-up in the deterministic case.
We address the approximate minimization problem for weighted finite automata (WFAs) with weights in $mathbb{R}$, over a one-letter alphabet: to compute the best possible approximation of a WFA given a bound on the number of states. This work is grounded in Adamyan-Arov-Krein Approximation theory, a remarkable collection of results on the approximation of Hankel operators. In addition to its intrinsic mathematical relevance, this theory has proven to be very effective for model reduction. We adapt these results to the framework of weighted automata over a one-letter alphabet. We provide theoretical guarantees and bounds on the quality of the approximation in the spectral and $ell^2$ norm. We develop an algorithm that, based on the properties of Hankel operators, returns the optimal approximation in the spectral norm.
108 - Manfred Droste 2017
We introduce MK-fuzzy automata over a bimonoid K which is related to the fuzzification of the McCarthy-Kleene logic. Our automata are inspired by, and intend to contribute to, practical applications being in development in a project on runtime network monitoring based on predicate logic. We investigate closure properties of the class of recognizable MK-fuzzy languages accepted by MK-fuzzy automata as well as of deterministically recognizable MK-fuzzy languages accepted by their deterministic counterparts. Moreover, we establish a Nivat-like result for recognizable MK-fuzzy languages. We introduce an MK-fuzzy MSO logic and show the expressive equivalence of a fragment of this logic with MK-fuzzy automata, i.e., a Buchi type theorem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا